Älykkyyden Intersektionalinen Luokittelu

Älykkyys

Älykkyysosamäärä, IQ, on älykkyyden parametri, joka voidaan määritellä erittäin yleiseksi henkiseksi kyvyksi, johon sisältyy muun muassa kyky

  • perustella,
  • suunnitella,
  • ratkaista ongelmia,
  • ajatella abstraktisti,
  • ymmärtää monimutkaisia ideoita,
  • oppia nopeasti ja
  • oppia kokemuksesta.

Vihreät ihmiset ovat hyviä ihmisiä

  • Äly voidaan mitata, ja
  • älykkyystesti mittaa sen hyvin

Älykkyydellä on “suuri käytännöllinen ja sosiaalinen merkitys” (Kirjoittaa Gottfredson, 1994).

Esitän tässä artikkelissa mallin ihmisten pisteyttämiseksi valtiollisen kansalaisuuden perusteella. Malli on suunniteltu erityisesti ulkoministeriön käyttöön, mutta on sellaisenaan sovellettavissa kaikissa valtion virastoissa.

Intersektionaalinen Luokitus

Älykkyysparametri on otettava mukaan, kun ihmisen sijoittuminen intersektionaaliseen luokitteluun määrätään virkapäätöksenä. Kansalaiset saattavat tuntea turvattomuutta, jos heidän yhteiskunnallista asemaansa ei ole virallisella tasolla määrätty ja sen pysyvyyttä turvattu.

Vasta sitten, kun kansalaisten älykkyys on yksilökohtaisesti rekisteröity, on mahdollista käyttää tuota tietoa valtion hyväksi.

Älyn Pisteyttäminen

Olen tähän laskenut ulkoministeriön käyttöön pisteytystaulukon, jonka antamaa kerrointa voidaan käyttää kansainvälisissä suhteissa eri valtioihin, jos muuta kerrointa ei ole käytettävissä.

Valtio Äly     Pisteytys
Sao Tome and Principe 59,00 69
Equatorial Guinea 59,00 69
Liberia 60,00 67
Sierra Leone 60,00 67
Yemen 60,00 67
South Africa 60,00 67
Nepal 60,00 67
Mali 60,00 67
Guinea 60,00 67
Ghana 60,00 67
Gambia, The 60,00 67
Djibouti 60,00 67
Cabo Verde 60,00 67
Senegal 60,00 67
Mauritania 60,00 67
Malawi 60,10 66
South Sudan 60,11 66
Saint Lucia 60,19 66
Nicaragua 60,22 66
Cote d’Ivoire 60,98 64
Guatemala 60,99 64
Honduras 62,16 61
Chad 62,18 61
Central African Rep. 62,28 61
Cameroon 62,28 61
Belize 62,55 60
Botswana 62,83 59
Congo, Republic of the 62,97 59
Gabon 62,97 59
Ethiopia 63,00 59
Haiti 63,22 58
Saint Vincent and the Grenadines 63,42 58
Congo, Democratic Republic of the 64,12 56
Togo 65,12 54
Guinea-Bissau 65,31 53
Morocco 65,32 53
Dominica 65,41 53
Zimbabwe 66,00 52
Lesotho 66,04 51
Egypt 66,19 51
Namibia 66,19 51
Niger 66,35 51
Burkina Faso 66,35 51
Nigeria 67,00 49
Angola 67,40 48
Somalia 67,67 48
Uganda 67,73 48
Eritrea 68,00 47
Burundi 68,44 46
Zambia 68,84 45
Saint Helena, Ascension, and Tristan da Cunha 68,99 45
Benin 69,00 45
Kuwait 69,21 44
Mozambique 69,50 44
Jamaica 69,59 44
El Salvador 69,63 44
Swaziland 69,80 43
Rwanda 70,00 43
Saint Kitts and Nevis 70,44 42
Antigua and Barbuda 70,44 42
Grenada 70,53 42
Philippines 70,81 41
Kyrgyzstan 71,25 40
Tanzania 71,33 40
Afghanistan 71,57 40
Sudan 72,00 39
Kenya 72,00 39
Syria 72,85 37
India 73,57 36
Comoros 73,66 36
Oman 74,10 35
Bangladesh 74,19 35
Saudi Arabia 74,24 35
Bhutan 74,70 34
Dominican Republic 74,95 33
Gaza Strip 75,72 32
Qatar 75,98 32
Algeria 76,00 32
Virgin Islands 76,65 30
Ecuador 76,74 30
Madagascar 77,04 30
Bolivia 77,35 29
Vietnam 77,39 29
Peru 77,49 29
Jordan 77,80 29
Maldives 77,83 28
Guyana 77,83 28
Sri Lanka 77,94 28
Barbados 78,00 28
Bahamas, The 78,00 28
Libya 78,47 27
Indonesia 78,51 27
Seychelles 78,76 27
Timor-Leste 78,79 27
Papua New Guinea 78,79 27
Iran 78,87 27
Panama 79,00 27
Tunisia 79,22 26
Colombia 79,37 26
Argentina 79,41 26
United Arab Emirates 79,48 26
Pakistan 79,75 25
Solomon Islands 79,92 25
Uzbekistan 80,00 25
Turkmenistan 80,00 25
Trinidad and Tobago 80,00 25
Tajikistan 80,00 25
Netherlands Antilles 80,01 25
Mariana Islands 80,02 25
Lebanon 80,11 25
Laos 80,12 25
Bahrain 80,38 24
Cambodia 80,63 24
Vanuatu 80,96 24
Micronesia, Federated States of 80,96 24
Mauritius 81,00 23
Venezuela 81,05 23
Brazil 81,54 23
Puerto Rico 81,59 23
Albania 81,75 22
Macedonia 81,91 22
Myanmar 82,01 22
Kiribati 82,01 22
Brunei 82,19 22
Cayman Islands 82,27 22
Paraguay 82,37 21
Mongolia 82,69 21
Cuba 82,82 21
Romania 82,83 21
Marshall Islands 83,15 20
Bosnia and Herzegovina 83,20 20
Tonga 83,96 19
Samoa 83,96 19
Fiji 83,96 19
Cook Islands 83,96 19
New Caledonia 84,20 19
Turks and Caicos Islands 84,21 19
Kazakhstan 84,27 19
Georgia 84,50 18
Azerbaijan 84,81 18
Mexico 85,02 18
Montenegro 85,78 17
Chile 85,93 16
Costa Rica 86,00 16
Malaysia 86,05 16
Iraq 86,28 16
Turkey 86,33 16
Greece 86,38 16
Bulgaria 86,84 15
Serbia 87,28 15
Thailand 87,47 14
Uruguay 87,59 14
Greenland 88,27 13
Suriname 88,37 13
Ukraine 88,61 13
Armenia 88,82 13
Malta 88,87 13
Bermuda 89,41 12
Ireland 89,59 12
Portugal 89,65 12
Moldova 89,98 11
Croatia 90,00 11
Israel 90,61 10
Czechia 90,62 10
Cyprus 91,03 10
Latvia 91,14 10
Canada 91,15 10
Italy 91,51 9
Russia 92,23 8
Spain 92,26 8
United States 92,74 8
Lithuania 93,46 7
Denmark 94,20 6
Andorra 94,53 6
Poland 94,59 6
Norway 94,76 6
Sweden 94,92 5
Slovenia 95,00 5
Luxembourg 95,00 5
Belarus 95,00 5
Hungary 95,04 5
Belgium 95,12 5
Slovakia 95,32 5
Finland 95,60 5
France 95,83 4
Iceland 96,02 4
Estonia 97,00 3
Korea, South 97,13 3
Switzerland 97,16 3
Austria 97,19 3
United Kingdom 97,33 3
New Zealand 97,50 3
Australia 98,00 2
Macau 98,13 2
Germany 98,80 1
Liechtenstein 99,54 0
Korea, North 99,89 0
China 100,00 0
Netherlands 100,08 0
Singapore 101,99 -2
Taiwan 103,01 -3
Hong Kong 103,91 -4
Japan 103,99 -4

Kansallinen Älykkyyspolitiikka

Maahamme pitää laatia älykkyyspoliittinen koulutusohjelma, joka on otettava käyttöön jo peruskoulun tasolla. Tavoitteena on oltava henkilön yksilöllisen älykkyyden kehittäminen siten, että oppivelvollisuuden suoritettuaan kaikki kansalaiset ovat yhtä älykkäitä.

On luonnollisesti huomioitava, että valtion hallintoa ei voida antaa näin tyhmien ihmisten haltuun, joten virka-sektioon kuuluvien ja arvostettujen kansalaisten lapsille on valtion varoista kustannettava erilliset koulutuslaitokset. Tasa-arvon toteuttamiseksi näihin erityisoppilaitoksiin hyväksyttävien määrää pitää luonnollisesti rajoittaa. Gaussin käyrän mukaisesti näihin erityisoppiin hyväksyttävien erityislasten määrä saa olla enintään yhtä suuri kuin käyrän toiseen päähän sijoittuvien kehityshuolto ja vammaislaitosten ihmismassan suuruus on.

Viitteet

Valtioiden väliset älykkyyserot

Kirjallisuutta

  1. Abdel-Khalek, A. M. (1988).
    Egyptian results on the Standard Progressive Matrices. Personality and Individual Differences, 9, 193-195.
  2. Abdel-Khalek, A. M., & Lynn, R. (2009).
    Norms for intelligence in Saudi Arabia assessed by the Standard Progressive Matrices. Mankind Quarterly, 50, 106-113.
  3. Abdel-Khalek, A. M., Nour-Eddin, A. S., & Lynn, R. (2015).
    A Study of the Intelligence of University Students in Egypt. Mankind Quarterly, 55, 129-135.
  4. Abdel-Khalek, A., & Raven, J. (2008).
    Kuwaiti norms for the classic SPM in an international context. In Raven, J., & Raven, J. C. (Eds) (2008).
    Uses and abuses of intelligence. Studies advancing Spearman’s and Raven’s quest for non-arbitrary metrics. Unionville, NY: Royal Fireworks Press.

  1. Abdel-Khalek, A.M., & Lynn, R. (2006).
    Sex differences on the Standard Progressive Matrices and in educational attainment in Kuwait. Personality and Individual Differences, 40, 175-182.
  2. Abdel-Khalek, A.M., & Lynn, R. (2010).
    Norms for intelligence assessed by the Standard Progressive Matrices in Oman. Mankind Quarterly, 49, 184-186.
  3. Aboussaleh, Y., Ahami, A.O.T., Bonthoux, F., Marenddaz, C., & Valdois, S. (2006).
    Performances cognitives des enfants anémiques âgés de 6 à 11 ans en milieu urbain du Nord-Ouest Marocain. Journal de Thérapie Comportementale et Cognitive, 16, 249-54.
  4. Abul-Hubb, D. (1972).
    AppIication of Progressive Matrices in Iraq. In Cronbach, L. J., & Drenth, P. J. (Eds) (1972).
    Mental Tests and Cultural Adaptation. The Hague: Mouton.

  1. Afzal, M. (1988).
    Consequences of consanguinity on cognitive behavior. Behavior Genetics, 18, 583-594.
  2. Agrawal, N., Sinha, S. N., & Jensen, A. R. (1984).
    Effects of inbreeding on Raven matrices. Behavior Genetics, 14, 579-585.
  3. Ahmad, R., Khanum, S. J., Riaz, Z., & Lynn, R (2009).
    Gender differences in means and variance on the Standard Progressive Matrices in Pakistan. Mankind Quarterly, 49, 50-57.
  4. Ahmed, A. S. F., Osman, H. A., Bakhiet, S. F. A., Cheng, H., & Lynn, R. (2017).
    Gender Differences on the Standard Progressive Matrices of South Sudanese Living in Khartoum. Mankind Quarterly, 58, 2.

  1. Al Said, T. B. T. (2014).
    The relationship between nonverbal intelligence and emotional intelligence among children in UK and Oman. International Journal of Psychological Studies, 6, 79-86.
  2. Alderman, H., Hawkesworth, S., Lundberg, M., Tasneem, A., Mark, H., & Moore, S. E. (2014).
    Supplemental feeding during pregnancy compared with maternal supplementation during lactation does not affect schooling and cognitive development through late adolescence. American Journal of Clinical Nutrition, 99, 122-129.
  3. Alonso Garcia, O. S. (1973).
    Raven. Factor “g”, edad y escolaridad. Revista del Hospital Psiquiátrico de La Habana, 14, 60-77.
  4. Al-Shahomee A. A., Lynn, R., & Abdalla S. E-G. (2013).
    Dysgenic fertility, intelligence and family size in Libya. Intelligence, 41, 67-69.

  1. Al-Shahomee, A. A., & Lynn, R (2012).
    A standardisation of the Standard Progressive Matrices for Libyan adults aged 38 to 50 years. Mankind Quarterly, 52, 292-310.
  2. Al-Shahomee, A. A., & Lynn, R. (2010).
    Norms and sex differences for the Standard Progressive Matrices in Libya. Mankind Quarterly, 51, 97-107.
  3. Al-Shahomee, A. A., & Lynn, R. (2010b). IQs of Men and Women and of Arts and Science Students in Libya. Mankind Quarterly, 51, 154-158.
  4. Al-Shahomee, A. A., Abdalla, S. El-Gh., & Lynn, R. (2017).
    An Increase in Intelligence in Libya from 2006 to 2017. Mankind Quarterly, 58, 290-296.

  1. Andreu, B.I., Alvarez, V., & Veray, B. (1991).
    Estudio comparativo de la Escala de Inteligencia Wechsler para Adultos y la Escala de Inteligencia Wechsler para Adultos Revisada en una poblacion universitaria puertorriquena. Revista Puertorriquena de Psicologia, 7, 1-11.
  2. Ani, C. C., & Grantham-McGregor, S. (1998).
    Family and personal characteristics of aggressive Nigerian boys. Journal of Adolescent Health, 23, 311-317.
  3. Anum, A. (2014).
    A Standardisation study of the Raven’s Coloured Progressive Matrices in Ghana. Ife PsychologIA, 22, 27-35.
  4. Aslam, M. (2009).
    The Relative Effectiveness of Government and Private Schools in Pakistan: Are Girls Worse Off? Education Economics, 17, 329-354, doi:10.1080/09645290903142635

  1. Aslam, M., & Lehrer, K. (2014).
    Learning by Doing: Skills and Jobs in Urban Ghana. The Journal of Development Studies, 50, 1119-1134.
  2. Aziz, Sh., & Farooqi, Gh. N. (1991).
    Gender, age, grade, and socioeconomic status differences on Raven’s Coloured Progressive Matrices. Pakistan Journal of Psychological research, 6, 91-102.
  3. Bagby, E. T. (2011).
    Essays on human capital development in developing countries. Ph.D. University of Illinois at Urbana-Champaign.
  4. Bakhiet, S. F. A., & Lynn, R. (2015c). Norms for the Standard Progressive Matrices in the Gaza Strip. Mankind Quarterly, 56, 87-95.

  1. Bakhiet, S. F. A., & Lynn, R. (2015e). Gender differences on the Wechsler Intelligence Scale for Children-III in Bahrain and the United States. Psychological Reports, 117, 794-8.
  2. Bakhiet, S. F. A., & Lynn, R. (2014a). Intelligence in Jordan: Norms for the Standard Progressive Matrices. Open Differential Psychology, 15 April.
  3. Bakhiet, S. F. A., & Lynn, R. (2014b). A study of intelligence in Jordan. Psychological Reports: Mental & Physical Health, 115, 515-516.
  4. Bakhiet, S. F. A., & Lynn, R. (2014c). A study of the IQ in Palestine. Intelligence, 47, 10-11.

  1. Bakhiet, S. F. A., & Lynn, R. (2015a). A Standardization of the Coloured Progressive Matrices in Tripoli, Libya. Mankind Quarterly, 56, 79-86.
  2. Bakhiet, S. F. A., & Lynn, R. (2015b). A standardization of the Standard Progressive Matrices in Egypt. Mankind Quarterly, 56, 79-86.
  3. Bakhiet, S. F. A., & Lynn, R. (2015d). A note on a new study of intelligence in Egypt. Psychological Reports, 115, 810-812.
  4. Bakhiet, S. F. A., & Lynn, R. (2015f). A study of intelligence in Oman. Psychological Reports: Mental & Physical Health, 115, 840-841.

  1. Bakhiet, S. F. A., & Lynn, R. (2015h). Regional differences in intelligence in Sudan. Intelligence, 50, 150-152.
  2. Bakhiet, S. F. A., Abdelrasheed, N. S. G., & Lynn, R. (2017).
    A New Study of the Coloured Progressive Matrices in Libya. Mankind Quarterly, 58, 297-300.
  3. Bakhiet, S. F. A., Abdelrasheed, N. S. G., Al-Khadher, M. M. A., Adan, M. H., Cheng, H., & Lynn, R. (2017).
    A study of sex differences in intelligence of Somali refugees in Kenya. Mankind Quarterly, 58, 301-306.
  4. Bakhiet, S. F. A., Abdelrasheed, N. S. G., Cheng, H., Lynn, R., Essa, Y. A. S., & Blahmar, T. A. M. (2017b). Sex differences on the Coloured Progressive Matrices in Sudan. Mankind Quarterly, 57, 581-584.

  1. Bakhiet, S. F. A., Abdelrasheed, N. S. G., Lynn, R., & Essa, Y. A. S. (2015).
    A Study of the Colored Progressive Matrices in Kuwait. Mankind Quarterly, 56, 168-172.
  2. Bakhiet, S. F. A., Al-Khadher, M. A, & Lynn, R. (2015).
    A Study of Means and Sex Differences on Raven’s Standard Progressive Matrices Plus in Yemen. Mankind Quarterly, 55, 268-277.
  3. Bakhiet, S. F. A., Essa, Y. A. S., Dwieb, A. M. M., Elsayed, A. M. A., Sulman, A. S. M., Cheng, H., & Lynn, R. (2016b). Correlations between intelligence, head circumference and height: Evidence from two samples in Saudi Arabia. Journal of Biosocial Science, 2017, 1-5.
  4. Bakhiet, S. F. A., Sles, N., Lynn, R., & Meisenberg, G. (2018).
    A Study of the Standard Progressive Matrices Plus in Cambodia. Mankind Quarterly, 58, 580-587.

  1. Bakhiet, S. F., Becker, D., Ahmed, S. A. E. S., & Lynn, R. (2019).
    Intelligence in the East African state of Djibouti. In press.
  2. Bakhiet, S. F., Becker, D., Lynn, R. (2019).
    Intelligence in the West African state of Benin. In press.
  3. Bakhiet, S. F.A (2008).
    Application of progressive matrices in the Sudan. Arab Psynet, 19, 223-225.
  4. Bala, G., & Kati, R. (2009).
    Sex differences in anthropometric characteristics, motor and cognitive functioning in preschool children at the time of school enrolment. Collegium Anthropologium, 33, 1071-1078.

  1. Bala, G., Krneta, Z., & Drid, P. (2013).
    The effects of kinesiologal activity on motor and intellectual functioning of children in relation to their physical condition at birth. Collegium Anthropologium, 37, 161-170.
  2. Bandeira, D. R., Alves, I. C. B., Giacomel, A. E., & Lorenzatto, L. (2004).
    Matrizes Progressivas Coloridas de Raven – Escala especial: Notmas para Porto Allegre, RS. Psicologia em Estudio, 9, 479-486.
  3. Bandeira, D. R., Costa, A., & Arteche, A. (2012).
    The Flynn effect in Brazil with DAP and Raven. Revista Latinoamericana de Psicología, 44, 9-18.
  4. Baraheni, M. N. (1974).
    Raven’s Progressive Matrices as applied to Iranian children. Educational & Psychological Measurement, 34, 983-988.

  1. Bass, N. (2000).
    The Raven’s Coloured Progressive Matrices Test: A pilot study for the establishment of normative data for Xhosa speaking Primary School pupils in the Grahamstown region. MA Social Science, Rhodes University, Grahamstown, South Africa.
  2. Batterjee, A. A. (2011).
    Intelligence and education: the Saudi case. Mankind Quarterly, 52, 133-190.
  3. Batterjee, A. A., & Ashria, I. (2015).
    Intelligence and education: The Sudan case. Mankind Quarterly, 56, 135-166.
  4. Batterjee, A. A., Khaleefa, O., Ashaer, K., & Lynn, R. (2013).
    Normative data for IQ, height and head circumference for children in Saudi Arabia. Journal of Biosocial Science, 45, 451-459.
  5. Bautista, A., Barker, P. A., Dunn, J. T., Sanchez, M., & Kaiser, D. K. (1982).
    The effects of oral iodized oil on intelligence, thyroid status, and somatic growth in school-age children from an area of endemic goiter. The American Journal of Clinical Nutrition, 35, 127-134.
  6. Beam, Ch. R., Turkheimer, E., Dickens, W. T., & Winders Davis, D. (2015).
    Twin differentiation of cognitive ability through phenotype to environment transmission: The Louisville Twin Study. Behavioral Genetics, 45, 622-634.
  7. Beaver, K. M., Schwartz, J. A., Connolly, E. J., Nedelec, J. L., Al-Ghamdi, M. S., & Kobeisy, A. N. (2013).
    The genetic and environmental architecture to the stability of IQ: Results from two independent samples of kinship pairs. Intelligence, 41, 428-438.
  8. Belacchi, C., Carretti, B., & Cornoldi, C. (2010).
    The role of working memory and updating in Coloured Raven Matrices performance in typically developing children. European Journal of Cognitive Psychology, 22, 1010-1020.

  1. Belacchi, C., Scalisi, T. G., Cannoni, E., & Cornoldi, C. (2008).
    Analisi della distribuzione descrittiva ai punteggi CPM del campione normativo, per fascia di età e per tipo di somministrazione (N = 4678). Firenze: Giunti O.S. Organizzaazioni Speciali.
  2. Bella, H., Khalil, M. S., Al-Almaie, S. M., Kurashi, N. Y., & Wahas, S. (2005).
    The effects of birth interval on intellectual development of Saudi school children in Eastern Saudi Arabia. Saudi Medical Journal, 26, 741-745
  3. Belsky, D. W., Caspi, A., Goldman-Mellor, S., Meier, M. H., Ramrakha, S., Poulton, R., & Moffitt, T. E. (2013).
    Is obesity associated with a decline in intelligence quotient during the first half of the life course? American Journal of Epidemiology, 178, 1461-1468.
  4. Berkman, D. S., Lescano, A. G., Gilman, R. H., Lopez, S. L. L., & Black, M. M. (2002).
    Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study. The Lancet, 359, 564-571.

  1. Berry, J. W. (1966).
    Temne and Eskimo perceptual skills. International Journal of Psychology, 1, 207-229.
  2. Bhakta, P., Hackett, R. J., & Hackett, L. (2002).
    Prevalence and associations of reading difficulties in a population of South Indian children. Journal of Research in Reading, 25, 191-202.
  3. Birney, D. P., Beckmann, J. F., Beckmann, N., & Double, K. S. (2017).
    Beyond the intellect: Complexity and learning trajectories in Raven’s Progressive Matrices depend on self-regulatory processes and conative dispositions. Intelligence, 61, 63-77. doi:10.1016/j.intell.2017.01.005
  4. Bishop, E. G., Cherny, St. S., Corley, A., Plomin, R., DeFries, J. C., & Hewitt, J. K. (2003).
    Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. Intelligence, 31, 31-49.

  1. Bleichrodt, N., Drenth, P. J. D., & Querido, A. (1980).
    Effects of iron deficiency on motor and psychomotor abilities. American Journal of Physical Anthropology, 53, 55-67.
  2. Blumen, S. (2000).
    Identification of and attention for the highly able in Lima. PhD thesis, University of Nijmegen.
  3. Boben, D. (2007).
    The standardization of all the main Raven Progressive Matrices tests in Slovenia. In J. Raven & J. Raven (Eds), Uses and Abuses of Intelligence. Unionville, NT: Royal Fireworks Press.
  4. Boissiere, M., Knight, J. B., & Sabot, R.H. (1985).
    Earnings, schooling, ability and cognitive skills. American Economic Review, 75, 1016-1030.

  1. Boivin, M. J., & Giordani, B. (1993).
    Improvements in cognitive performance for schoolchildren in Zaire following an iron supplement and treatment for intestinal parasites. Journal of Pediatric Psychology, 18, 249-264.
  2. Boivin, M. J., Giordani, B., & Bornfeld, B. (1995).
    Use of the tactual performance test for cognitive ability testing with African children. Neuropsychology, 9, 409-417.
  3. Boivin, M. J., Giordani, B., Crist, C. L., & Chounramany, C. (1996).
    Validating cognitive ability testing protocol with Lao children for community development applications. Neuropsychology, 10, 588-599.
  4. Boivin, M. J., Giordani, B., Ndanga, K., Maky, M. M., Manzeki, K. M., Ngunu, N., & Muamba, K. (1993).
    Effects of treatment for intestinal parasites and malaria on the cognitive abilities of schoolchildren in Zaire, Africa. Health Psychology, 12, 220-226.

  1. Boivin, M. J., Okitundu, D., MD, Bumoko, G. M.-M., Sombo, M. Th., Mumba, D., Tylleskar, Th., MD, Page, C. F., Muyembe, J.-J. T., MD, & Tshala-Katumbay, D., (2013).
    Neuropsychological effects of Konzo: a neuromotor disease associated poorly processed cassava. Pediatrics, 131, 1231-1239.
  2. Bouchard, M. F., Sauvé, S., Barbeau, B., Legrand, M., Brodeur, M.-E., Bouffard, Th., Limoges, E., Bellinger, D. C., & Mergler, D. (2011).
    Intellectual impairment in school-age children exposed to manganese from drinking water. Environmental Health Perspectives, 119, 138-143.
  3. Boucher, O., Muckle, G., Saint-Amour, D., Dewailly, É., Ayotte, P., Jacobson, S. W., Jacobson, J. L., & Bastien, C. H. (2009).
    The relationship of lead neurotoxicity to the eventrelated potential P3B component in Inuit children von arctic Québec. Neurotoxicology, 30, 1070-1077.
  4. Brooks-Gunn, J., Klebanov, P. K. & Duncan, G. J. (1996).
    Ethnic Differences in Children’s Intelligence Test Scores: Role of Economic Deprivation, Home Environment, and Maternal Characteristics. Child Development, 67, 396-408.

  1. Buckley, G. J., Murray-Kolb, L. E., Khatry, S. K., LeClerq, S. C., Wu, L., West Jr, K. P., & Christian, P. (2013).
    Cognitive and motor skills in school-aged children following maternal vitamin A supplementation during pregnancy in rural Nepal: a follow-up of a placebo-controlled, randomised cohort. BMJ Open, 3, e002000.
  2. Buj, V. (1981).
    Average IQ values in various European countries. Personality and Individual Differences, 2, 168-169.
  3. Calderon, M. C., & Hoddinott, J. (2010).
    The inter-generational transmission of cognitive abilities in Guatemala. International Food Policy Research Institute.
  4. Canfield, R. L., Henderson Jr., Ch. R., Cory-Slechta, D. A., Cox, Ch., Jusko, T. A., & Lanphear, B. P. (2003).
    Intellectual Impairment in Children with Blood Lead Concentrations below 10 μg per Deciliter. The New England Journal of Medicine, 348, 1517-1526.

  1. Chambers, R. M., Morrison-Levy, N., Chang, S., Tapper, J., Walker, S., & Tulloch-Reid, M. (2014).
    Cognition, academic achievement, and epilepsy in school-age children: A case–control study in a developing country. Epilepsy & Behavior, 33, 39-44.
  2. Chan, J., & Vernon, P. E. (1988).
    Individual differences among the peoples of China. In Irvine, S. H., & Berry, J. W. (Eds) (1988).
    Human Abilities in Cultural Context. Cambridge, UK: Cambridge University Press.
  3. Chan, J., Eysenck, H. J., & Lynn, R. (1991).
    Reaction time and intelligence among Hong Kong children. Perceptual and Motor Skills, 72, 427-433.
  4. Chiplonkar, S. A., & Kawade, R. (2014).
    Linkages of biomarkers of zinc with cognitive performance and taste acuity in adolescent girls. International Journal of Food Science & Nutrition, 65, 399-415.

  1. Chong, Y.-S., Liang, Y., Gazzard, G., Stone, R. A., & Saw, S.-M. (2005).
    Association Between Breastfeeding and Likelihood of Myopia in Children. Journal of the American Medical Association, 293, 3001-3002.
  2. Chou, E.C., & Lau, L.J. (1987).
    Farmer ability and farm productivity: a study of farm households in the Chiang Mai valley, Thailand 1972-1978. Report No. EDT62. Education & Training Department, Washington, DC, USA: World Bank.
  3. Choudhury, N., & Gorman, K. (1999).
    The relationship between reaction time and psychometric intelligence in a rural Guatemalan adolescent population. International Journal of Psychology, 34, 209-217.
  4. Chowdhury, S. D., & Ghosh, T. (2010).
    Nutritional and socioeconomic status in cognitive development of Santal children of Purulia district, India. Annals of Human Biology, 38, 188-193.

  1. Christian, P., Murray-Kolb, L. E., Khatry, S. K., Katz, J., Schaefer, B. A., Cole, P. M., LeClerq, S. C., & Tielsch, J. M. (2010).
    Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. Journal of the American Medical Association, 304, 2716-2713.
  2. Christiansen, T., & Livermore, G. (1970).
    A comparison of Anglo-American and Spanish-American children on the WISC. Journal of Social Psychology, 81, 9-14. From: Valencia, R. R., & Suzuki, L. A. (2001).
    Intelligence Testing and Minority Students. Foundations, Performance, Factors, and Assessment Issues. Thousand Oaks, London, New Delhi: Sage Publications Inc..
  3. Chuderski, A. (2015).
    The broad factor of working memory is virtually isomorphic to fluid intelligence tested under time pressure. Personality and Individual Differences, 85, 98-104.
  4. Colom, R., & Flores-Mendoza, C. (2007).
    Intelligence predicts scholastic achievement irrespective of SES factors: evidence from Brazil. Intelligence, 35, 243-251.

  1. Connelly, J. B. (1983).
    Recategorized WISC-R score patterns of older and younger referred Tlingit Indian children. Psychology in the school, 20, 271-275.
  2. Costenbader, V., & Ngari, S. M. (2001).
    A Kenya standardisation of the Coloured Progressive Matrices. School Psychology International, 22, 258-268.
  3. Cotten, J. (1985).
    Evaluation Research on the PL 480 Title II School Feeding Program in Haiti. Port-au-Prince: USAID/Haiti.
  4. Cotton, S. C., Kiely, P. M., Crewther, D. P., Thomson, B., Laycock, R., & Crewther, S. G. (2005).
    A normative and reliability study for the Raven’s Coloured Progressive Matrices for primary school aged children from Victoria, Australia. Personality and Individual Differences, 39, 647-659.

  1. Counter, S. A., Buchanan, L. H., Rosas, H. D., & Ortega, F. (1998).
    Neurocognitive effects of chronic lead intoxication in Andean children. Journal of Neurological Science, 160, 47-53.
  2. Čvorović, J., & Lynn, R. (2014).
    Intelligence and reproductive success of Bosniaks, Serbs and Roma in Serbia. Mankind Quarterly, 54, 434-446.
  3. Daley, T. C., Whaley, S. E., Sigman, M. D., Espinosa, M. P., & Neuman, C. (2003).
    IQ on the rise: the Flynn effect in rural Kenyan children. Pychological Science, 14, 215-219.
  4. Darcy, N. T. (1946).
    The effec of bilingualism upon the measurement of the intelligence of children aof preschool age. The Journal of Educational Psychology, 37, 21-44.

  1. de Abreu, P. M. J. E., Nikaedo, C., Abreu, N., Tourinho, C. J.,1, Miranda, M. C., Bueno, O. F. A., & Martin, R. (2014).
    Working memory screening, school context, and socioeconomic status: An analysis of the effectiveness of the working memory rating scale in Brazil. Journal of Attention Disorders, 18, 346-356.
  2. de Jesus, R. B. M. (1990).
    School-related stress in Puerto Rican children. A Dissertation in Partial Fulfillment of the Requirements of the Degree of Doctor of Psychology at the university of Connecticut.
  3. De Kohan, N.C. (1997).
    Logros en educaciob primaria y su relacion con inteligencia general y con los procesos de pensamiento en la resolucion de problemas. Revista Latinoamericana de Psicolgia, 29, 65-79.
  4. de Neubourg, E., & de Neubourg, Ch. (2011).
    The Impact of Malnutrition and Post Traumatic Stress Disorder on the Performance of Working Memory in Children. Preliminary draft.

  1. de Ronceray, H., & Petit-Frere, S. (1975).
    Project experimentale sur le bilinguisme Creole-Francais au niveau de l’enseignement primaire en Haiti. Bulletin d’Informations du CHISS, 4, 2-25.
  2. Dendir, S. (2013).
    Children’s endowment, schooling, and work in Ethiopia. WIDER Working Paper, No. 2013/086. Information Center for Economics.
  3. Diaz, A., Sellami, K., Infanzón, E., Lanzón, T., & Lynn, R. (2010).
    Sex differences in means and variance of intelligence: Some data for Spain. Mankind Quarterly, 50, 210-220.
  4. Díaz, A., Sellami, K., Infanzón, E., Lanzón, T., & Lynn, R. (2012).
    A comparative study of general intelligence in Spanish and Moroccan samples. Spanish Journal of Psychology, 15, 526-532.

  1. Djapo, N., & Lynn, R. (2010).
    Gender differences in means and variability on the Progressive Matrices in Bosnia-Herzegovina. Mankind Quarterly, 50, 221-224.
  2. Dobrean, A., Raven, J., Comşa, M., Rusu, C., & Balazsi, R. (2008).
    Romanian standardization of Raven’s Standard Progressive Matrices Plus. In: Raven, J., & Raven, J. C. (Eds) (2008).
    Uses and Abuses of Intelligence. Unionville, NY: Royal Fireworks Press.
  3. Dramé, C., & Ferguson, Ch. J. (2017).
    Measurements of Intelligence in sub-Saharan Africa: Perspectives Gathered from Research in Mali. Current Psychology, 2017, 1-6.
  4. Drid, P., Vujkov, S., Jakšić, D. Trivić, T., Marinković, D., & and Bala, G. (2013).
    Differences in motor and cognitive abilities of children depending on their vody mass index and subcutaneous adipose tissue. Collegium Anthropologium, 37, 171-177.

  1. Durbrow, E. H., Schaefer, B. A., & Jimerson, S. (2002).
    Diverging academic paths in rural Caribbean children. School Psychology International, 23, 155-168.
  2. Dutton, E., & Lynn, R. (2014).
    The Canadian IQ calculated from the standardization of the WAIS IV. Open Differential Psychology, 20th of August, 2014.
  3. Dutton, E., Bakhiet, S. F., Ziada, K. E., Essa, A. A. S., Blahmar, T. A. M. (2017).
    A negative Flynn Effect in Khartoum, the Sudanese capital. Intelligence, 63, 51-55. doi:10.1016/j.intell.2017.05.003
  4. [“Dutton, E., Essa, Y. Ah. S., Bakhiet, S. F., Ali, H. A. A., Alqafari, Sh. M., Alfaleh, A. S. H., & Becker, D. (2018).](https://lite.duckduckgo.com/lite?q=“Dutton, E., Essa, Y. Ah. S., Bakhiet, S. F., Ali, H. A. A., Alqafari, Sh. M., Alfaleh, A. S. H., & Becker, D. (2018).)
    Brain drain in Syria’s ancient capital: No Flynn Effect in Damascus,

  1. [2004–2013/14. Personality and Individual Differences, 125, 10-13.“](https://lite.duckduckgo.com/lite?q=2004–2013/14. Personality and Individual Differences, 125, 10-13.“)
  2. Dutton, E., te Nijenhuis, J., & Roivainen, E. (2014).
    Solving the puzzle of why Finns have the highest IQ, but one of the lowest number of Nobel prizes in Europe. Intelligence, 46, 192-202.
  3. Duzen, N. E., Sahin, N., Raven, J., & Raven, C. J. (2008).
    The Classic Form of the Standard Progressive Matrices in Turkey. In Raven, J. (Ed) (2008).
    Uses and Abuses of Psychology. New York: Fireworks Press.
  4. El Azmy, J., Ahami, A. O. T., Badda, B., Azzaoui, F. Z., Aboussaleh, Y., Latifi, M., & El Hessni, A. (2013).
    Evaluation des performances neurocognitives des collégiens à M’rirt (Moyen Atlas, Maroc). Antropo, 30, 33-43.

  1. Engelhardt, L. E., Mann, F. D., Briley, D. A., Church, J. A., Harden, K. P., & Tucker-Drob, E. M. (2016).
    Strong Genetic Overlap Between Executive Functions and Intelligence. Journal of Experimental Psychology: General. 145, 1141-1159.
  2. Escobal, J., Lanata, C., Madrid, S., Penny, M., Saavedra, J., Suárez, P., Verastegui, H., Villar, E., & Huttly, Sh. (2003).
    Young Lives Preliminary Country Report: Peru. Young Lives: An International Study of Child Poverty.
  3. Estrada, E., Ferrer, E., Abad, F. J., Román, F. J., & Colom, R.(2015). A general factor of intelligence fails to account for changes in tests’ scores after cognitive practice: A longitudinal multi-group latent-variable study. Intelligence, 50, 93-99.
  4. Fajgelj, S., Bala, G., & Kati, R. (2010).
    Latent Structure of Raven’s Colored Progressive Matrices. Collegium Antropologicum, 34, 1015-1026.

  1. Fatouros, M. (1972).
    The influence of maturation and education on the development of mental abilities In Cronbach, L. J., & Drenth, P. J. (Eds) (1972).
    Mental Tests and Cultural Adaptation. The Hague: Mouton.
  2. Fergusson, D. M., & Horwood, L. J. (1997).
    Sex differences in educational achievement in a New Zealand birth cohort. New Zealand Journal of Educational Studies, 32, 83-95.
  3. Fergusson, L. C., Bonshek, A. J., & Le Masson, G. (1995).
    Vedic science based education and nonverbal intelligence: A preliminary longitudinal study in Cambodia. Higher Education Research and Developmen, 15, 73-82.
  4. Fernandez, M. (2001).
    A study of the intelligence of children in Brazil. Mankind Quarterly, 42, 17-21.

  1. Flores, M. B., & Evans, G. T. (1972).
    Some differences in cognitive abilities between selected Canadian and Filipino students. Multivariate Behavioral Research, 7, 175-191.
  2. Flores-Mendoza, C. E., & Nascimento, E. (2007).
    Condição cognitiva de crianças de zona rural. Estudos de Psicologia I Campinas, 24, 13-22.
  3. Flores-Mendoza, C., Jardim, G. L., Abad, F. J., & Rodrigues, L. A. (2010).
    Informação geral e atual e sua relação com a inteligência e a personalidade em crianças escolares. Estudos de Psicologia I Campinas, 27, 161-168.
  4. Flores-Mendoza, C., Widaman, K., Mansur-Alves, M., Bacelar, T. D., & Saldanha, R. (2013).
    Psychoticism and disruptive behavior can be also good predictors of school achievement. Spanish Journal of Psychology, 16, 1-13.

  1. Flynn, J. R., & Rossi-Casé, L. (2012).
    IQ gains in Argentina betwen 1964 and 1988. Intelligence, 40, 145-150.
  2. Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008).
    Individual Differences in Executive Functions Are Almost Entirely Genetic in Origin. Journal of Experimental Psychology: General, 137, 201-225.
  3. Frydman, M., & Lynn, R. (1989).
    The intelligence of Korean children adopted in Belgium. Personality and Individual Differences, 10, 1323-1325.
  4. Fuertes de la haba, A., Santiago, G., & Bangdiwala, I.S. (1976).
    Measured intelligence in offspring of oral and nonoral contraceptive users. American Journal of Obstetrics & Gynecology, 125, 980-983.

  1. Galler, J. R., Ramsey, F. C., Forde, V., & Archer, E. (1987).
    Long-term effects of early kwashiorkor compared with marasmus. II. Intellectual performance. Journal of Pediatric Astroenterology & Nutrition, 6, 847-854.
  2. Galván, M., Uauy, R., López-Rodríguez, G., & Kain, J. (2013).
    Association between childhood obesity, cognitive development, physical fitness and social-emotional wellbeing in a transitional economy. Annals of Human Biology, 4, 101-106.
  3. Gandhi-Kingdon, G. (1996).
    The quality and efficiency of private and public education: A case-study of urban India. Oxford Bulettin of Economics and Statistics, 58, 57-82.
  4. Garcia, I. Q. (2016) Normativos da Forma Geral das Matrizes Progressivas de Raven numa Amostra da Comunidade. Dissertação de Mestrado em Psicologia Clínica Ramo de Especialização em Terapias Familiares e Sistémicas, Coimbra.

  1. Georgas, J., Weiss, L. G., van der Vijver, F. J., & Saklofske, D. H. (2003).
    A cross-cultural analysis of the WISC-111. In Georgas, J., Weiss, L. G., van der Vijver, F., & Saklofske, D. H. (Eds) (2003).
    Culture and Children’s Intelligence. Amsterdam: Academic Press.
  2. Georgas, J., Weiss, L. G., van der Vijver, F., & Saklofske, D. H. (Eds) (2003).
    Culture and Children’s Intelligence. Amsterdam: Academic Press.
  3. Gestel, S. F., Thiery, E., Deram, C., Beeckmans, K., & Derom, R. (1997).
    Intelligence in Twins: Effect of Chorion Type. Center for Human Genetics, Herestraat 49 O&N6, B-3000 Leuven, Belgium. From: Charlemaine, Ch., & Pons, C. J. (1998).
    What Monozygotic Twins Tell Us About Genetic Determinism. Race, Gender & Class, 5, 12-40.
  4. Gewa, C. A., Weiss, R. E., Bwibo, N. O., Whaley, Sh., Sigman, M., Murphy, S. P., Harrison, G., & Neumann, Ch. G. (2009).
    Dietary micronutrients are associated with higher cognitive function gains among primary school children in rural Kenya. Journal of Nutrition, 101, 1378-1387.

  1. Ghazi, H. F., Isa, Z.M., Aljunid, S., Tamil, A. M., & Abdalquader, M. A. (2012).
    Nutritional Status, Nutritional Habit, and Breakfast Intake, in Relation to IQ among primary school children in Bagdad City Iraq. Pakistan Journal of Nutrition, 11, 379-382.
  2. Gintilienë, G., & Butkienë, D. (2005).
    Raveno spalvoto Progresuoljaneio Matrico standartizacija lietuvoje. Psichologija, 32, 1-13.
  3. Glewwe, P., & Jaccoby, H. (1992).
    Estimating the Determinants of Cognitive Achievement in Low Income Countries. Washington, DC: World Bank.
  4. Glutting, J. J. (1986).
    Potthoff bias analysis of KABC MPC and non-verbal scale IQs among Anglo, Blacks and Puerto Rican kindergarden children. Professional School Psychology, 1, 225-234.

  1. Goldbeck, L., Daseking, M., Hellwig-Brida, S., Waldmann, H. C., & Petermann, F. (2010).
    Sex Differences on the German Wechsler Intelligence Test for Children (WISC-IV). Journal of Individual Differences, 31, 22-28.
  2. Grantham-McGregor, S., Powell, C., Walker, S., Chang, S., & Fletcher, P. (1994).
    The long-term follow-up of severely malnourished children who participated in an intervention program. Child Development, 65, 428-439.
  3. Grantham-McGregor, S.M., Walker, S.P., Chang, S.M., & Powell, C.A. (1997).
    Effects of early childhood supplementation with and without stimulation on later development in stunted Jamaican children. American Journal of Clinical Nutrition, 66, 247-253.
  4. Green, R.F. (1972).
    On the correlation between IQ and amount of “white” blood. Proceedings of the Annual Convention of the American Psychological Association, 7, 285-286.

  1. Grigoriev, A., & Lynn, R. (2014).
    A study of the IQ in Kazakhstan. Intelligence, 46, 40-46.
  2. Grob, A., Petermann, F., Lipsius, M, Costan-Dorigan, J., Petermann, U., & Daseking, M. (2008).
    Differences in Swiss and German children’s intelligence as measured by the HAWIK-1V. Swiss Journal of Psychology, 67, 113-118.
  3. Gruszka, A., & Owen, A. M. (2015).
    Temperamental variation in learned irrelevance in humans. Current Issues in Personality Psychology, 3, 94-104.
  4. Güler, M. & Basim, N. (2016).
    Genel Bilişsel Yetenek Ölçümlerinde Süre ve Performans İlişkisinde A Tipi Kişiliğin Rolü. Journal of Management and Economics, 23, 189-202.

  1. Haapala, E. A., Lintu, N., Väistö, J., Robinson, L.E., Viitasalo, A., Lindi, V., & Lakka, T. A. (2015).
    Associations of physical performance and adiposity with cognition in children. Medicine & Science in Sports & Exercise, 47, 2166-2174.
  2. Hackett, R., Hackett, L., & Bhakakta, P. (1998).
    Psychiatric disorder and cognitive function in children with epilepsy in Kerala, South India. Seizure, 7, 321-324.
  3. Hadidjaja, P., Bonang, E., Suyardi, A., Abidin, A. N., Ismid, I. S., & Margono, S. S. (1998).
    The effect of intervention methods on nutritional status and cognitive function of primary school children infected with ascaris lumbricoides. American Journal of Tropical Medicine, 59, 791-795.
  4. Hadidjaja, P., Mahfudin, H., Ismid, I. S., Bonang, E., Yunandi, R., & Hartana, D. B. (1996).
    The effect of ascariosis treatment and health education on the cognitive function of primary school children. Medical Journal of Indonesia, 5, 189-194.

  1. Hamadani, J. D., Tofail, F., Nermell. B., Gardner, R., Shiraji, S., Bottai, M., Arifeen, S. E., Huda, S. N., & Vahter, M. (2011).
    Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys:a population-based cohort study. International Journal of Epidemioliology, 40, 1593-1604.
  2. Hambleton, R. K., Merenda, P. F., & Spielberger, Ch. D. (2005).
    Adapting Educational and Psychological Tests for Cross-Cultur. Mahwah, New Jersey, London: LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS.
  3. [Hamid, J. J. M., Mitra’z, A. K., Hasmiza, H., Pim, C. D., Ng, L., & Wan Manan, W. M. (2011).](https://lite.duckduckgo.com/lite?q=Hamid, J. J. M., Mitra’z, A. K., Hasmiza, H., Pim, C. D., Ng, L., & Wan Manan, W. M. (2011).)
    Effect of gender and nutritional status on academic achievement and cognitive function among primary school children in a rural district in Malaysia. Malaysian Journal of Nutrition, 17, 189-200.
  4. Haraldsson, E., Fowler, P. C., & Periyannanpillai, V. (2000).
    Psychological characteristics of children who speak of a previous life: a further field study in Sri Lanka. Transcultural Psychiatry, 37, 525-544.

  1. Harari, R., Julvez, J., Murata, K., Barr, D., Bellinger, D. C., Debes, F., & Grandjean, Ph. (2010).
    Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environmental Health Perspectives, 118, 890-896.
  2. Heady, C. (2003).
    The effect of child labor on learning achievement. World Development, 31, 385-398.
  3. Heilmann, S. (2013).
    Life-chances of children in Indonesia: The links between parental resources and children’s outcomes in the areas of nutrition, cognition and health. A thesis submitted to the Department of Social Policy of the London School of Economics for the degree of Doctor of Philosophy, London, September 2013.
  4. Heiz, J., & Barisnikov, K. (2016).
    Visual-motor integration, visual perception and motor coordination in a population with Williams syndrome and in typically developing children. Journal of Intellectual Disability Research, 60, 945-955.

  1. Helland, I. B., Smith, L. Blomén, B., Saarem, K., Saugstad, O. D., & Drevon, Ch. A. (2008).
    Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years. Pediatrics, 122, e472-479.
  2. Hertzig, M.E., Birch, H.G., Thomas, A., & Mendez, O.A. (1968).
    Class and ethnic differences in the responsiveness of preschool children to cognitive demands. Monographs of the Society for Research in Child Development, 33, 1-69.
  3. Heyneman, S. P., & Jamison, D. T. (1980).
    Student learning in Uganda. Comparative Education Review, 24, 207-220.
  4. Hoekstra, R. A., Bartels, M., & Boomsma, D. I. (2007).
    Longitudinal genetic study of verbal and nonverbal IQ from early childhood to young adulthood. Learning and Individual Differences, 17, 97-114.

  1. Høie, B., Mykletun, A., Sommerfelt, K., Bjørnæs, H., Skeidsvoll, H., & Waaler, P. E. (2005).
    Seizure-related factors and non-verbal intelligence in children with epilepsy. A population-based study from Western Norway. Seizure, 14, 223-231.
  2. Horn, J. M., Loehlin, J. C., & Willerman, L. (1979).
    Intellectual resemblance among adoptive and biological relatives: The Texas Adoption Project. Behavior Genetics, 9, 177-207.
  3. Humble, S., Dixon, P., & Schagen, I. (2016).
    Assessing intellectual potential in Tanzanian children in poor areas of Dar es Salaam. Assessment in Education: Principles, Policy & Practice, DOI: 10.1080/0969594X.2016.1194257.
  4. Hur, Y.-M., & Lynn, R. (2013).
    Twin-singleton differences in cognitive abilities in a sample of Africans in Nigeria. Twin Research and Human Genetics, 16, 1-8.

  1. Hur, Y.-M., te Nijenhuis, J., & Jeong, H. U. (2017).
    Testing Lynn’s theory of sex differences in intelligence in a large sample of Nigerian school-aged children and adolescents (N > 11,000) using Raven’s Standard Progressive Matrices Plus. Mankind Quarterly, 57, 428-437.
  2. Husain, N. I. A. E., Becker, D., Bakhiet, S. F., & Lynn, R. (2019).
    Intelligence, family income and parental education in the Sudan. In press
  3. Ijarotimi, O. S., & Ijadunola, K. T. (2007).
    Nutritional status and intelligence quotient of primary school children in Akure community of Ondo State, Nigeria. Tanzania Health Research Bulletin, 9, 69-76.
  4. Iloh, K. K., Ubesie, A. C., & Iloh, O. N. (2017).
    Do Socio-demographic characteristics influence the performance of children on Raven Progressive Matrices in Enugu, Nigeria? International Neuropsychiatric Disease Journal, 9, 1-6.

  1. Imperato-McGinley, J., Pichardo, M., Gautler, T., Voyer, D,. & Brydent, M. P. (1991).
    Cognitive abilities in androgen-insensitive subjects: comparison with control males and females. Clinical Endocrinology, 34, 341-347.
  2. Irvine, S. H. (1969).
    Figural tests of reasoning in Africa: studies in the use of Raven’s Progressive Matrices across cultures. International Journal of Psychology, 4, 217-228.
  3. Irwing, P., Hamza, A., Khaleefa, O., & Lynn, R. (2008).
    Effects of Abacus training on the intelligence of Sudanese children. Personality & Individual Differences, 45, 694-696.
  4. Jamil, F., & Khalid, R. (2016).
    Predictors of Academic Achievement in Primary School Students. Pakistan Journal of Psychological Research, 31, 45-61.

  1. Jamison, D. T., & Lockheed, M. E. (1985).
    Participation in Schooling: Deferminants and Learning Outcomes in Nepal. World Bank.
  2. Jamison, D. T., & Moock, P. R. (1984).
    Farmer Education and Farm Efficiency in Nepal: The Role of Schooling, Extension Services, and Cognitive Skills. World Development, 12, 67-86.
  3. Janssen, A. B., & Geiser, Ch. (2012).
    Cross-Cultural Differences in Spatial Abilities and Solution Strategies– An Investigation in Cambodia and Germany. Journal of Cross-Cultural Psychology, 43, 533.
  4. Jardim-Botelho, A., Raff, S., Rodrigues, R. A., Hoffman, H. J., Diemert, D. J., Correˆa-Oliveira, R., Bethony, J. M., & Gazzinelli, M. F. (2008).
    Hookworm, Ascaris lumbricoides infection and polyparasitism associated with poor cognitive performance in Brazilian schoolchildren. Tropical Medicine and International Health, 13, 994-1004.

  1. Jegede, R. O., & Bamgboye, A. (1981).
    Self-concepts of young Nigerian adolescents. Psychological Reports, 49, 451-454.
  2. Jinabhai, C. C., Taylor, M., Rangongo, N. J., Mkhize, S., Anderson, S., Pillay, B. J., & Sullivan, K. R. (2004).
    Investigating the mental abilities of rural primary school children in South Africa. Ethnicity and Health, 9, 17-36.
  3. John, J. St., Krichev, A., & Bauman, E. (1976).
    Northwestern Ontario Indian children and the WISC. Psychology in the Schools, 13, 407-411.
  4. Johnson, P. (1988).
    Effective secondary schooling: factors affecting academic achievement in the Commonwealth of The Bahamas. Ph.D. thesis, University of Toronto.

  1. Jordheim, G. D., & Olsen, I. A. (1963).
    The use of a non-verbal test of intelligence in the trust territory of the Pacific. American Anthropologist, 65, 1122-1125.
  2. Jukes, M. C. H., & Grigorenko, E. L. (2010).
    Assessment of cognitive abilities in multiethnic countries: The case of the Wolof and Mandinka in Gambia. British Journal of Educational Psychology, 80, 77-98.
  3. Jukes, M. C. H., Pinder, M., Grigorenko, E. L., Smith, H. B., Walraven, G., & Bariau, E. M. (2006).
    Long-term impact of malaria chemoprophylaxis on cognitive abilities and educational attainment: Follow-up of a controlled trial. PLoS Clinical Trials, 19, 1-8.
  4. Jyothi, K., Susheela, S., Kodaqli, V. R., Balakrishnan, S., & Seshaiah, V. (1993).
    Poor cognitive performance of insulin-dependent biabetic children in India. Diabetes Research & Clinical Preactice, 20, 209-213.

  1. Kahn, H., Spears, J. S., & Rivera, L. V. (1977).
    Applicability of Raven Progressive Matrices tests with school children in Puerto Rico. Psycho Educational Associates.
  2. Kalisch, T., Kattenstroth, J.-Ch., Kowalewski, R., Tegenthoff, M., & Dinse, H. R. (2012).
    Cognitive and Tactile Factors Affecting Human Haptic Performance in Later Life. PLoS ONE, 7, e30420.
  3. Kaniel, S., & Fisherman, S. (1991).
    Level of performance and distribution of errors in the Progressive Matrices test: a comparison of Ethiopian immigrant and native Israeli adolescents. International Journal of Psychology, 26, 25-33.
  4. Kaniel, S., & Fisherman, S. (1991).
    Level of performance and distribution of errors in the Progressive Matrices test: a comparison of Ethiopian immigrant and native Israeli adolescents. International Journal of Psychology, 26, 25-33; Lynn, R. (1994).
    The intelligence of Ethiopian immigrant and Israeli adolescents. International Journal of Psychology, 29, 55–56.

  1. Kashala, E., Elgen, I., Sommerfeldt, K., Tylleskar, T., & Lundervold, A. (2005).
    Cognition in African children with attention-deficit hyperactivity disorder. Pediatric Neurology, 33, 357-364.
  2. Kaufman, A. S., McLean, J. E., Ishikuma, T., & Moon, S. B. (1989).
    Integration of literature on the intelligence of Japanese children and analysis of the data from a sequential-simultaneous perspective. School Psychology International, 10, 173-183.
  3. Kazem, A. M., Al-Zubaidi, A. S., Alkharusi, H. A., Yousif, Y. H., Alsarmi, A. M., Al-Bulushi, S. S., Aljamali, F. A., Al-Mashhdany, S., Al-Busaidi, O. B., Al-Fori, S. M., Al-Bahrani, W. A., & Alshammary, B. M. (2009).
    A normative study of the Raven Coloured Progressive Matrices Test for Omani children aged 5 through 11 years. Malaysian Journal of Education, 34, 37-51.
  4. Kazem, A. M., Alzubiadi, A. S., Yousif, Y. H., Aljamali, F. A., Al-Mashhdany, S. I., Alkharusi, H.A., Al-Busaidi, O. B., Alsarmi, A. M., Al-Bulushi, S. S., Al-Bahrani, W. A., & Al-Fori, S. M. (2007).
    Psychometric properties of the Raven’s Coloured Progressive Matrices for Omani children aged 5 through 11 years. Social Behavior & Personality, 35, 1385-1398.

  1. Khaleefa, O., & Lynn, R. (2008a). Norms for intelligence assessed by the Standard Progressive Matrices in Qatar. Mankind Quarterly, 49, 65-71.
  2. Khaleefa, O., & Lynn, R. (2008b). Sex differences on the Progressive Matrices: Some data from Syria. Mankind Quarterly, 48, 345-352.
  3. Khaleefa, O., & Lynn, R. (2008c). A study of intelligence in the United Arab Emirates. Mankind Quarterly, 49, 58-64.
  4. Khaleefa, O., & Lynn, R. (2008d). Normative data for Raven’s Progressive Matrices in Yemen. Psychological Reports, 103, 170-172

  1. Khaleefa, O., Amer, Z., & Lynn, R. (2014).
    IQ differences between arts and science students at the University of Khartoum. Mankind Quarterly, 55, 136-140.
  2. Khaleefa, O., Khatib, M. A., Mutwakkil, M. M., & Lynn, R. (2008a). Norms and gender differences on the Progressive Matrices in Sudan. Mankind Quarterly, 49, 177-183.
  3. Khaleefa, O., Lynn, R., Abulgasim, A. Dosa, M., & Abdulradi, F. (2010).
    Norms for the Standard Progressive Matrices for 9-18 year olds for Darfur. Mankind Quarterly, 50, 311-317.
  4. Khosimov, A. & Lynn, R. (2017).
    A study of intelligence in Tajikistan. Mankind Quarterly, 57, 438-442.

  1. Kitsao-Wekulo, P. K., Holding, P. A., Taylor, H. G., Abubakar, Am., & Connolly, K. (2013).
    Neuropsychological testing in a rural African school-age population: Evaluating contributions to variability in test performance. Assessment, 20, 776-784.
  2. Klingelhofer, E. L. (1967).
    Performance of Tanzanian Secondary School Pupils on the Raven Standard Progressive Matrices Test. The Journal of Social Psychology, 73, 205-215.
  3. Knight, S., Singhal, A., Thomas, P., & Serjeant, G. (1995).
    Factors associated with lowered intelligence in homozygous sickle cell disease. Archives of Disease in Childhood, 73, 316-320.
  4. Knowles, J. (2008).
    Assessment of non-verbal intelligence in South African schools: Do language and gender bias performance on the Raven’s Standard Progressive Matrices? Master Thesis at the University of the Witwatersrand, Johannesburg.

  1. Korsch, F., Petermann, U., Schmidt, S., & Petermann, F. (2013).
    Kognitive, sprachliche, motorische und sozial-emotionale Defizite bei verhaltensauffälligen Schulanfängern. Prax. Kinderpsychol. Kinderpsychiat, 62, 405-419.
  2. Kozulin, A. (1998).
    Profiles of immigrant students’ cognitive performance on Raven’s Progressive Matrices. Perceptual and Motor Skills, 87, 1311-1314.
  3. Kramer, M. S., Aboud, F., Mironova, E., Vanilovich, I., Platt, R. W., Matush, L., … & Shapiro, S. (2008).
    Breastfeeding and Child Cognitive Development. New Evidence From a Large Randomized Trial. Archives of general psychiatry, 65, 578-584.
  4. Kratzmeier, H., & Horn, R. (1988).
    SPM – Standard Progressiv matrices. Weinheim: Belz Test Gesellschaft.

  1. Kyöstiö, O. K. (1972).
    Divergence among school beginners caused by different cultural influences. In Cronbach, L. J., & Drenth, P. J. (Eds) (1972).
    Mental Tests and Cultural Adaptation. The Hague: Mouton.
  2. Lai, T. J., Guo, Y. L., Guo, N. W., & Hsu, C. C. (2001).
    Effects of prenatal exposure to polychlorinated biphenyls on cognitive development in children: a longitudinal study in Taiwan. British Journal of Psychiatry, 178, 49-52.
  3. Lancer, I., & Rim, Y. (1984).
    Intelligence, family size and sibling age spacing. Personality and Individual Differences, 5, 151-157.
  4. Lange, R. T., Schoenberg, M. R., Woodward, T. S., & Brickell, T. A. (2005).
    Development of the WAIS-III estimate of premorbid ability for Canadians (EPAC). Archives of Clinical Neuropsychology, 20, 1009-1024.

  1. Latifi, M., Soulaymani, A., Ahami, A. O. T., Mokhtari, A., Aboussaleh, Y., Rusinek, S. (2009).
    Comparaison des performances cognitives chez les adolescents consanguins et les non consanguins de la région nord Ouest marocain. Antropo, 19, 57-65.
  2. Leon, C. A., Jaramillo, R., Martinez, S., Fernandez, F., Tollez, H., Lasso, B., & de Guzmdn, R. (1975).
    Sequelae of Venezuelan equine encephalitis in humans: a four year follow-up. International Journal of Epidemiology, 4, 131-140.
  3. Lepach, A. C., Reimers, W., Pauls, F., Petermann, F., & Daseking, M. (2015).
    Geschlechtseffekte bei Intelligenz und Gedächtnisleistungen. Zeitschrift für Neuropsychologie, 26, 5-16.
  4. Li, D., Jin,Y., Vandenberg, S. G., Zhu,Y., & Tang, C. (1990).
    Report on Shanghai norms for the Chinese translation of the Wechsler Intelligence Scale for Children – Revised. Psychological Reports, 67, 531-541.

  1. Lieblich, A., & Kugelmas, S. (1981).
    Patterns of intellectual ability of Arab school children in Israel. Intelligence, 5, 311-320.
  2. Lim, T. K. (1994).
    Gender-related differences in intelligence: application of confirmatory factor analysis. Intelligence, 19, 179-192.
  3. Liu, J., Raine, A., Venables, P. H., Dalais, C., & Mednick, S. A. (2003).
    Malnutrition at 3 years and lower cognitive ability at 11 years. Archives of Pediatric Adolescent Medicine, 157, 593-600.
  4. Liu, X., Shi, Y., Niu, B., Shi, Zh., Li, J., Ma, Zh. Jian Wang, … & Zhang, K. (2016).
    Polymorphic variation in CHAT gene modulates general cognitive ability: An association study with random student cohort. Neuroscience Letters, 617, 122-126.

  1. Loyola, J. L., & McBride, D. F. (1991).
    Puerto Rican Children’s codeswitching and their performance on receptive vocabulary instruments and a nonverbal cognitive measurement. Diagonstique, 16, 239-253.
  2. Lynn, R. & Abdel-Khalek, A. (2009).
    Intelligence in Jordan: Norms for the Advanced Progressive Matrices. Mankind Quarterly, 50, 114-119.
  3. Lynn, R. (1977).
    The intelligence of the Chinese and Malays in Singapore. Mankind Quarterly, 18, 125-128.
  4. Lynn, R. (1977b). The intelligence of the Chinese and Malays in Singapore. Mankind Quarterly, 18, 125-128.

  1. Lynn, R. (1997).
    Intelligence in Taiwan. Personality and Individual Differences, 22, 585-586.
  2. Lynn, R. (2007a). A study of the IQ in Bangladesh. Mankind Quarterly, 48, 117-122.
  3. Lynn, R. (2015).
    Selective emigration, Roman Catholicism and the decline of intelligence in Ireland. Mankind Quarterly, 55, 242-253.
  4. Lynn, R., & Chan, P. W. (2003).
    Sex differences on the Progressive Matrices: some data from Hong Kong. Journal of Biosocial Science, 35, 145-154.

  1. Lynn, R., & Hampson, S. (1986a). The Structure of Japanese Abilities: An Analysis in Terms of the Hierarchical Model of Intelligence. Current Psychological Research & Reviewe, Winter 1985-86, 309-322.
  2. Lynn, R., & Hampson, S. (1987).
    Further evidence on the cognitive abilities of the Japanese: data from the WPPSI. International Journal of Behavioral Development, 10, 23-36.
  3. Lynn, R., & Holmshaw, M. (1990).
    Black-White differences in reaction times and intelligence. Social Behaviour and Personality, 18, 299-308.
  4. Lynn, R., & Ja Song, M. (1994).
    General intelligence, visuospatial and verbal abilities of Korean children. Personality and Individual Differences, 16, 363-364.

  1. Lynn, R., & Kazlauskaite, V. (2002).
    A Study of the IQ in Lithuania. Perceptual andMotor Skills, 96, 611-612.
  2. Lynn, R., & Wilson, R. G. (1990).
    Reaction times, movement times and intelligence among Irish nine year olds. Irish Journal of Psychology, 11, 329-341.
  3. Lynn, R., Abdalla, S.-E. G., & Al-Shahomee, A. A. (2008a). Norms for the Progressive Matrices for Libya and Tunisia. The Mankind Quarterly, 49, 71-77.
  4. Lynn, R., Backhoff, E., & Contreras, L. A. (2005).
    Ethnic and racial differences on the Standard Progressive Matrices in Mexico. Journal of Biosocial Science, 37, 107–113.

  1. Lynn, R., Chen, H.-Y., & Chen Y.-H. (2011).
    Intelligence in Taiwan: Progressive Matrices means and sex differences in means and variances for 6-17 year olds. Journal of Biosocial Science, 43, 1-6.
  2. Lynn, R., Cheng, H., & Wang, M. (2016).
    Differences in the intelligence of children across thirty-one provinces and municipalities of China and their economic and social correlates. Intelligence, 58, 10-13.
  3. Lynn, R., Hampson, S., & Lee, M. (1988).
    The intelligence of Chinese children in Hong Kong. School Psychology International, 9, 29-32.
  4. Lynn, R., Hur, Y.-M., Hwang, S.-T., Park, K. B., & Kim, J-H. (2016).
    A strong Flynn effect in South Korea during the second half of the twentieth century. Mankind Quarterly, 56, 562-571.
  5. Lynn, R., Pagliari, C., & Chan, J. (1988).
    Intelligence in Hong Kong measured for Spearman’s g and the visuospatial and verbal primaries. Intelligence, 12, 423-433.
  6. Lynn, R., Plaspalanova, E., Stetinsky, D., & Tzenova, B. (1998).
    Intelligence in Bulgaria. Psychological Reports, 82, 912-914.
  7. Malakul, S. (1957).
    Standardization of Progressive Matrices for Thai children. Journal of the Psychiatric Association of Thailand, 2, 7-25.
  8. Malda, M., van der Vijver, F. J. R., & Temaine, Q. M. (2010).
    Rugby versus soccer in South Africa: Content familiarity contributes to cross-cultural differences in test scores. Intelligence, 38, 582-595.

  1. Malloy-Diniz, L. F., Cardoso-Martins, C., Nassif, E. P., Levy, A. M., Leite, W. B., & Fuentes, D. (2008).
    Planning abilities of children aged 4 years and 9 months to 8 ½ years: Effects of age, fluid intelligence and school typeon performance in the Tower of London test. Dementia & Neuropsychologia, 2, 26-30.
  2. Maqsud, M. (1980).
    Personality and academic attainment of primary school children. Psychological Reports, 46, 1271-1275.
  3. Maqsud, M. (1997).
    Effects of metacognitive skills and nonverbal ability on academic achievement of high school pupils. Educational Psychology, 17, 387-397.
  4. Marinovich, R. I., Forno, H., Durán, M., Hazbún, J., Castro, C., & Ivanovic, D. (2000).
    Estudio de la capacidad intelectual (Test de Matrices Progresivas de Raven) en escolares chilenos de 5 a 18 años I. Antecedentes Generales, Normas y Recomendaciones. Revista de Psicología General y Aplicada, 53, 5-30.

  1. Marmorale, A. M. & Brown, F. (1975).
    Comparison of Bender-Gestalt and WISC correlations for Puerto Rican, white and Negro children. Journal of Clinical Psychology, 31, 465-468.
  2. Marmorale, A. M., & Brown, F. (1981).
    Constancy of WISC IQs of Puerto Rican, White and Black children. In L. L. Adler (Ed.), Cross-cultural research at issue (pp. 137-143). New York, USA: Academic Press.
  3. Martinelli, V., & Lynn, R. (2005).
    Sex differences on verbal and non-verbal abilities among primary school children in Malta. Journal of Maltese Educational Research, 3, 1-7.
  4. Martinelli, V., & Schembri, J. (2014).
    Dyslexia, spatial awareness and creativity in adolescent boys. The Psychology of Education Review, 38, 39-45.

  1. Martorell, R., Behrman, J. R., Grajeda, R., & Hoddinott, J. (2005).
    The human capital 2002–04 study in Guatemala: A follow-up to the INCAP longitudinal study 1969–77. Food & Nutrition Bulletin, 26, 1-120.
  2. Matias Carrelo, L.E., & Zaidspiner, V. (1990).
    Comparación de los cocientes intelectuales obtenidos en el WISC y en el WISC-R por dos grupos de niños puertorriqueños. Revista Puertorriqueña de Psicología, 63-72.
  3. McKay, H., Sinisterra, L., McKay, A., Gomez, H., & Lloreda, P. (1978).
    Improving cognitive ability of chronically deprived children. Science 200, 270, 270-278.
  4. Meisenberg, G., Lawless, E., Lambert, E., & Newton, A. (2005).
    The Flynn effect in the Caribbean: generational change in test performance in Dominica. Mankind Quarterly, 46, 29-70.
  5. Menezes-Filho, J. A., Novaes, C., Moreira, J. C., Sarcinelli, P. N., & Mergler, D. (2011).
    Elevated manganese and cognitive performance in school-aged children and their mothers. Environmental Research, 111, 156-163.
  6. Millones, D. M, Flores-Mendoza, C., & Millones Rivalles, R. (2015).
    Intelligence in Peru: Students’ results in Raven and its relationship to SES. Intelligence, 51, 71-78.
  7. Montiel-Naval, C., Montiel-Barbero1, I., & Peña1, J. A. (2005).
    Clima familiar en el trastorno por deficit de atentcion-hiperactividad. Psicología Conductual, 13, 297-310.
  8. Montiel-Naval, C., Peña, J. A., Montiel-Barbero, I., & Polanczyk, G. (2008).
    Prevalence rates of attention deficit/hyperactivity disorder in a school sample of Venezuelan children. Child Psychiatry & Human Development, 39, 311-322.
  9. Montiel-Naval, C., Peña, J.A., & Montiel-Barbero, I. (2003).
    Datos epidemiológicos del trastorno por déficit de atención con hiperactividad en una muestra de niños marabinos. Review of Neurology, 37, 815-819.
  10. Myers, G. J., Davidson, Ph. W., Cox, Ch., Shamlaye, C. F., Palumbo, D., Cernichiari, E., Sloane-Reeves, J., Wilding, G. W., Kost, J., Huang, L.-Sh., & Clarkson, Th. W. (2003).
    Prenatal methylmercury exposure from ocean fish consumption in the Seychelles child development study. Lancet, 361, 1686-1692.
  11. Nakano & Watkins (2013).
    Factor structure of the Wechsler Intelligence Scales for Children – Fourth Edition among referred Native American students. Psychology in the Schools, 50, 957-968.
  12. Nankabirwa, J., Wandera, B., Kiwanuka, N., Staedke, S. G., Kamya, M. R., & Brooker, S. J. (2013).
    Asymptomatic plasmodium infection and cognition among primary school children in a high malaria transmission setting in Uganda. American Journal of Tropical Medicine & Hygiene, 88, 1102-1108.

  1. Neubauer, A. C., Bauer, Ch., & Huller, G. (1992).
    Intelligence, attention, motivation and speed-accuracy trade-off in the Hick Paradigm. Personality and Individual Differences, 13, 1325-1332.
  2. Neumann, C. G., Murphy, S. P., Gewa, C., Grillenberger, M., & Bwibo, N. O. (2007).
    Meat supplementation improves growth, cognitive, and behavioral outcomes in Kenyan Children. Journal of Nutrition, 137, 1119-1123.
  3. Nga, T.T., Winichagoon, P., Dijkhuizen, M.A., Khan, N.C., Wasantwisut, E., & Wieringa, F.T. (2011).
    Decreased parasite load and improved cognitive outcomes caused by deworming and consumption of multi-micronutrient fortified biscuits in rural Vietnamese schoolchildren. American Journal of Tropical Medicine & Hygiene, 85, 333-340.
  4. Nichols, P. L., & Anderson, V E. (1973).
    Intellectual performance, race, and socioeconomic status. Social Biology, 20, 367-374. From: Valencia, R. R., & Suzuki, L. A. (2001).
    Intelligence Testing and Minority Students. Foundations, Performance, Factors, and Assessment Issues. Thousand Oaks, London, New Delhi: Sage Publications Inc..

  1. Nkaya, H. N., Huteau, M., & Bonnet, J.-P. (1994).
    Retest effect on cognitive performance on the Raven Matrices in France and in the Congo. Perceptual and Motor Skills, 78, 503-510.
  2. Nokes, C., Grantham-Mcgregor, S. M., Sawyer, A. W., Cooper, E. S., & Bundy, D. A. P. (1992a). Parasitic helminth infection and cognitive function in school children. Proceedings of the Royal Society, Biological Sciences, 247, 77-81.
  3. Nokes, C., Grantham-McGregor, S. M., Sawyer, A. W., Cooper, E. S., Robinson, B. A., & Bundy, D. A. (1992b). Moderate to heavy infections of Trichuris trichiura affect cognitive function in Jamaican school children. Parasitology, 104, 539-547.
  4. Odgerel, D., & Maekawa, H. (2003).
    A study on assessment of mental abilities of special children in Mongolia with Raven’s Coloured Progressive Matrices. Bulletin of Disablity Sciences, 27, 1-27.

  1. Omanbayev, B., Tosheva, Sh., & Lynn, R. (2018).
    A New Study of Intelligence in Sri Lank, Mankind Quarterly, 58, 501-504.
  2. Orsini, B. (1974).
    Intelligence testing and the culturally different: a comparison of Puerto Rican and black children. Unpublished paper, City College of New York, USA.
  3. Ortega, S. C. (2011).
    Factores de riesgo relacionados con la capacidad intelectual en niños escolarizados de 6 a 8 años pertenecientes a la comuna nororiental y noroccidental de la ciudad de Medellín. Ph.D thesis, University of San Buenventura Medellin.
  4. Ortiz Colón, R., Rosselló, J., Muñoz Vazquez, M., Maldonado Santiago, N., Suárez, N., & Donato Jímenez, L.J. (1993).
    Relación entre la exposición a sustancias tóxicas y el funcionamiento intelectual y afectivo de obreras textiles puertorriqueñas. Revista Puertorriqueña de Psicología, 9, 179-219.

  1. Orylska, A., Brzezicka, A., Racicka-Pawlukiewicz, E., Albinski, R., & Sedek, G. (2016).
    Parent-teacher concordance in rating preschooler difficulties in behavioural and cognitive functioning and their dyadic predicting of fluid intelligence. Polish Psychological Bulletin, 47, 81-91.
  2. Osman , H. A., Bakhiet, S. F. A., Alnaier, N. A. G. & Lynn, R. (2017a). A Study of the Intelligence of South Sudanese Refugee Children. Mankind Quarterly, 57, 585-589.
  3. Osman, H. A., Alahmadi, M. M. A., Bakhiet, S. F. A., & Lynn, R. (2016).
    The relation between intelligence and family size, position and income in adolescent girls in Saudi Arabia. Psychological Reports, 0, 1-4.
  4. Osman, H.A., Bakhiet, S. F. A., Abduljabbar, A.S., Alnaier, N. A. G., & Lynn, R. (2018).
    A study of intelligence in the new nation of South Sudan. Mankind Quarterly, in press.

  1. Owen, K. (1992).
    The suitability of Raven’s Progressive Matrices for various groups in South Africa. Personality and Individual Differences, 13, 149-159.
  2. Panek, P.E., & Stoner, S.B. (1980).
    Age differences on Raven’s Coloured Progressive Matrices. Perceptual & Motor Skills, 50, 977-978.
  3. Paz, C. A., Valenzuela, V. D., Rosales, J. H., & Goic, C. E. (2012).
    Estudio sobre la pertinencia del uso de las normas disponibles del Raven en adultos mayors Chilenos. Psico-USF, Bragança Paulista, 17, 387-395.
  4. Peixoto, B., & Kalei, I. (2013).
    Neurocognitive sequelae of cerebral malaria in adults: A pilot study in Benguela Central Hospital, Angola. Asian Pacific Journal of Tropical Biomedicine, 3, 532-535.

  1. Persaud, G. (1982).
    The relation of extraversion and neuroticism to non-verbal intelligence. Caribbean Journal of Education, 9, 32-43.
  2. Persaud, G. (1987).
    Sex and age differences of Raven’s Matrices. Perceptual and Motor Skills, 65, 45-46.
  3. [“Petrill, St. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, St. S., Corley, R., & DeFries, J. C. (2004).](https://lite.duckduckgo.com/lite?q=“Petrill, St. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, St. S., Corley, R., & DeFries, J. C. (2004).)
    Genetic and Environmental Contributions to General Cognitive Ability
  4. [Through the First 16 Years of Life. Developmental Psychology, 40, 805-812.“](https://lite.duckduckgo.com/lite?q=Through the First 16 Years of Life. Developmental Psychology, 40, 805-812.“)

  1. Phatthrayuttawat, S., Sukhatunga, K., Chantra, J., Chaiyasit, W., Bunnagulrote, K., & Imaroonrak, S. (2000).
    The normative scores of the Standard Progressive Matrices for the Thai population. Journal of the Psychiatric Association of Thailand, 45, 45-57.
  2. Phatthrayuttawat, S., Sukhatunga, K., Chantra, J., Chaiyasit, W., Bunnagulrote, K., & Imaroonrak, S. (2003).
    The normative scores of intelligence by Colored Progressive Matrices (CPM) in Thai population. Journal of Thai Clinical Psychology, 34, 58-70.
  3. Pind, J., Gunnarsdóttir, E. K., & Jóhannesson, H. S. (2003).
    Raven’s Standard Progressive Matrices: new school age norms and a study of the test’s validity. Personality and Individual Differences, 34, 375-386.
  4. Polderman, T. J. C., Gosso, M. F., Posthuma, D., van Beijsterveldt, T. C. E. M., Heutnik, P., Verhulst, F. C., & Boomsma, D. I. (2006).
    A longitudinal twin study on IQ, executive functioning, and attention problems during childhood and early adolescence. Acta Neurologica Belgica, 106, 191-207.

  1. Pollitt, E., Hathiral, P., Kotchabhakdi, N.J., Missell, L., & Valyasevi, A. (1989).
    Iron deficiency and educational achievement in Thailand. American Journal of Clinical Nutrition, 50, 687-697.
  2. [“Pongcharoen, T., DiGirolamo, A. M., Ramakrishnan, U., Winichagoon, P. & Flores, R. (2011).](https://lite.duckduckgo.com/lite?q=“Pongcharoen, T., DiGirolamo, A. M., Ramakrishnan, U., Winichagoon, P. & Flores, R. (2011).)
    Long-term effects of iron and zinc supplementation during infancy on
  3. [cognitive function at 9 y of age in northeast Thai children: a follow-up study. The American Journal of Clinical Nutrition, 93, 636-643.“](https://lite.duckduckgo.com/lite?q=cognitive function at 9 y of age in northeast Thai children: a follow-up study. The American Journal of Clinical Nutrition, 93, 636-643.“)
  4. Pongcharoen, T., Ramakrishnan, U., DiGirolamo, A. M., Winichagoon, P., Flores, R., Singkhornard, J., & Martorell, R. (2012).
    Influence of prenatal and postnatal growth on intellectual functioning in school-aged children. Archives of Pediatrics & Adolescent Medicine, 166, 411-416.

  1. Pons, J. I., Matías-Carrelo, L., Rodríguez, M., Rodríguez, J. M., Leticia Herrans, L., Jiménez, M. E., … & Yang, J. (2008).
    Estudios de validez de la Escala de Inteligencia Wechsler para Adultos Versión III, Puerto Rico (EIWA-III). Revista Puertorriqueña de Psicología, 19, 75-111.
  2. Poon, P. W. F., Yu, W. Y., & Chan, J. W. C. (1986).
    Correlation between auditory reaction time and intelligence. Perceptual & Motor Skills, 63, 375-378.
  3. Poppe, R. (2012).
    Essays in Development Economics. Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften. University of Mannheim.
  4. Preston, J. (1999).
    An investigation of Hmong students’ performance on four standardized cognitive ability measures. Unpublished doctoral dissertation, Graduate College, University of Wisconsin-Stout, USA.

  1. Prewitt Diaz, J. O., & Rivera, R. (1989) Correlation among scores on Woodcock-Johnson Achivement Subtest (spanish), WISC-R (Spanish) and Columbia Mental Maturity Scale. Psychological Reports, 64, 987-990.
  2. Prewitt Diaz, J.O., & Munoz, G. (1980).
    A reliability study of the WISC with Puerto Rican children (grades K-9) in Puerto Rico. Unpublished paper, Pennsylvania State University, USA.
  3. Prozorovskaya, I., Grigoriev, I., & Lynn, R. (2010).
    Gender differences in means and variability on the Standard Progressive Matrices for 15 year olds in Ukraine. Mankind Quarterly, 50, 297-310.
  4. Pruneti, C. (1985).
    Dati normativi del test P.M. 47 Coloured su un campione di bambini italiani. Bolletino di Psicologia Applicata, 176, 27-35.

  1. Pruneti, C., Fenu, A., Freschi, G., & Rota, S. (1996).
    Aggiornamento della standardizzazione italiana del test delle Matrici Progressive Colorate del Raven. Bolletino di Psicologia Applicata, 217, 51-57.
  2. Pullmann, H. Allik, J., & Lynn, R. (2004).
    The growth of IQ among Estonian schoolchildren from ages 7 to 19. Journal of Biosocial Science, 36, 735-740.
  3. Rabinowitz, M. B., Wang, J.-D., & Soong, W.-T. (1991).
    Dentine lead and child intelligence in Taiwan. Archives of Environmental Health, 46, 351-360.
  4. Rahman, A., Macbool, E., & Zuberi, H. S. (2002).
    Lead-associated deficits in stature, mental ability and behavior in children in Karachi. Annals of Tropical Paediatrics, 22, 301-311.

  1. Rajabi, G. (2009).
    Normalizing the Raven Coloured Progressive Matrices Test on students of the city of Ahvaz. Contemporary Psychology, 3, 23-33 (in Farsi).
  2. Rajatasilpin, A., Suepsaman, B., & Yamarat, V. (1970).
    Intellectual development and its relationship to the nutritional status among school children. Journal of the Medical Association of Thailand, 53, 788-793.
  3. Ratner, H. H., Chiodo, L., Covington, Ch., Sokol, R. J., Ager, J., & Delaney-Black, V. (2006).
    Violence Exposure, IQ, Academic Performance, and Children’s Perception of Safety: Evidence of Protective Effects. Merril-Palmer Quarterly, 52, 264-287.
  4. Raven, J. (2000).
    The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41, 1-48.

  1. Raven, J. (2008a). Coloured Progressive Matrices and Crichton Vocabulary Scale. London: Pearson.
  2. Raven, J. C., Raven, J., & Court, J. H. (1999).
    Raven’s Progressive Matrices und Vocabulary Scales. Magdeburg: Swets Test Service.
  3. Raven, J. C., Raven, J., & Court, J. H. (2006).
    Manual für Raven’s Progressive Matrices and Vocabulary Scales. Frankfurt: Harcourt Test Service.
  4. [“Raven, J., Raven, J. C., & Court, H. C. (1998).](https://lite.duckduckgo.com/lite?q=“Raven, J., Raven, J. C., & Court, H. C. (1998).)
    Manual for Raven’s Progressive Matrices

  1. [and Vocabulary Scales. Oxford: Infomration Press.“](https://lite.duckduckgo.com/lite?q=and Vocabulary Scales. Oxford: Infomration Press.“)
  2. Raven, J., Raven, J. C., & Court, J. H. (1999).
    Manual zu Raven’s Progressive Matrices und Vocabulary Scales. Frankfurt: Swets & Zeitlinger B. V..
  3. Richardson, St. A. (1976).
    The relation of savere malnutrition in infacncy to the intelligence of school children with differing life histories. Pediatric Research, 10, 57-61.
  4. Rijsdijk, F. V., Boomsma, D. I., & Vernon, P. A. (1995).
    Genetic Analysis of Peripheral Nerve Conduction Velocity in Twins. Behavior Genetics, 25, 341-348.

  1. Rijsdijk, F. V., Vernon, P. A., & Boomsma, D. I. (2002).
    Application of Hierarchical Genetic Models to Raven and WAIS Subtests: A Dutch Twin Study. Behavior Genetics, 32, 199-201.
  2. Rimoldi, H. J. (1948).
    A note on Raven’s Progressive Matrices Test. Educational and Psychological Measurement, 8, 347-352.
  3. Rindermann, H. (2013).
    African cognitive ability: Research, results, divergences and recommendations. Personality and Individual Differences, 55, 229-233.
  4. Rindermann, H., & te Nijenhuis, J. (2012).
    Intelligence in Bali – A case study on problems of international IQ comparisons and possibilities to deal with them. Intelligence, 40, 395-400.

  1. Rindermann, H., Falkenhayn, L., & Baumeister, A. E. E. (2014b). Cognitive ability and epistemic rationality: A study in Nigeria and Germany. Intelligence, 47, 23-33.
  2. Rindermann, H., Stiegmaier, E.-M., & Meisenberg, G. (2014a). Cognitive ability of preschool, primary and secondary school children in Costa Rica. Journal of Biosocial Science, 46, 1-30.
  3. Roca, P. (1955).
    Problems of adapting intelligence scales from one culture to another. High School Journal, 38, 124-131.
  4. Rodríguez, T. (2012).
    Environmental pesticide exposure and neurobehavioral effects among children of Nicaraguan agricultural workers. Ph.D thesis, University of Uppsala. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 820.

  1. Roivainen, E. (2010).
    European and American WAIS 111 norms: Cross-national differences in performance subtest scores. Intelligence, 38, 187-192.
  2. Roselló, J., Hernández, J. J., Zayas, G., Ortiz, P., Matos, M., & Alvarez, L. (1988).
    Relación entre la contaminación con mercurio y el funcionamiento intelectual y afectivo en un grupo de niños de Humacao, Puerto Rico. Revista Puertorriqueña de Psicología, 5, 1-12.
  3. Rushton, J. P., & Čvorović, J. (2009).
    Data on the Raven’s Standard Progressive Matrices from four Serbian samples. Personality and Individual Differences, 46, 483-486.
  4. Saddik, B., Williamson, A., Nuwayhid, I., & Black, D. (2005).
    The effects of solvent exposure on memory and motor dexterity in working children. Public Health Reports, 120, 657-663.

  1. [“Saks, K. (2013).](https://lite.duckduckgo.com/lite?q=“Saks, K. (2013).)
    Open Learning Environment and Study Motivation. About the Research Conducted within Scope of Exhibition and Science Theatre Project “Discover Natural
  2. [Phenomena”. Unpublished.“](https://lite.duckduckgo.com/lite?q=Phenomena”. Unpublished.“)
  3. Samms-Vaughan, M. (2005).
    Profiles: the Jamaican pre-school child: the status of early childhood development in Jamaica. Kingston, Jamaica: Planning Institute of Jamaica.
  4. San Miguel Montes, L.E., Allen, D.N., Puente, A.E., & Neblina, C. (2010).
    Validity of the WISC–IV Spanish for a clinically referred sample of Hispanic children. Psychological Assessment, 22, 465-469.

  1. Sandiford, P., Cassell, J., Sanchez, G., & Coldham, C. (1997).
    Does intelligence account for the link between maternal literacy and child survival? Social Science & Medicine, 45, 1231-1239.
  2. Sandoval, J., Zimmerman, I. L., & Woo-Sam, J. M. (1983).
    Cultural differences on WISC-R verbal items. Journal of School Psychology, 21, 49-55.
  3. Sbaibi, R., Aboussaleh, Y., & Ahamim, A. O. T. (2014).
    Sex differences in means and variance among middle school children in the rural commune of Sidi El Kamel (North-Western Morocco). Asian Journal of Scientific Research, 7, 376-385.
  4. Scarr, S., & McCartney, K. (1988).
    Far from home: An experimental evaluation of the Mother-Child Home Program in Bermuda. Child Development, 59, 531-543.

  1. Scarr, S., & Weinberg, R. A. (1976).
    IQ Test Performance of Black Children Adopted by White Families. American Psychologist, 1976, 726-739.
  2. Scarr, S., McCartney, K., Miller, S., Hauenstein, E., & Ricciuti, A. (1994).
    Evaluation of an islandwide screening, assessment and treatment program. Early Development and Parenting, 3, 199-210.
  3. Sellami, K., Infanzón, E., Lanzón, T., Díaz, A.,& Lynn, R. (2010).
    Sex differences in means and variance of intelligence: Some data from Morocco. Mankind Quarterly, 51, 84-92.
  4. Shamama-tus-Sabah, S., Gilani, N., & Wachs, Th. D. (2011).
    Relation of home chaos to cognitive performance and behavioral adjustment of Pakistani primary school children. Behavioral Development, 35, 507-516. doi:10.1177/0165025411406852

  1. Shibaev, V., & Lynn, R. (2017).
    The Intelligence of Yakuts and Ethnic Russians in Yakutia. Mankind Quarterly, 57, 680-686.
  2. Shigehisa, T., & Lynn, R. (1991).
    Reaction times and intelligence in Japanese children. International Journal of Psychology, 26, 195-202.
  3. Singh, S., & Ray, J. J. (1980).
    Modernization and development among Indian farmers: a modern proof of some old theories. Economic Development & Cultural Change, 28, 509-521.
  4. Siripitayakunkit, U., Visudhiphan, P., Pradipasen, M., & Vorapongsathron, T. (1999).
    Association between chronic arsenic exposure and children’s intelligence in Thailand. In W.R. Chappell, C.O. Abernathy & R.L. Calderon (Eds.), Arsenic exposure and health effects (pp. 141-150). New York, USA: Elsevier.

  1. Sisto, F. F., Bartholomeu, D., Rueda, F. J. M., dos Santos, A. A. A., & Noronha, A. P. P. (2008).
    Relações entre os Testes de Bender e Matrizes Progressivas Coloridas de Raven na Avaliação da Inteligência. Interação em Psicologia, 12, 11-19.
  2. Skuy, M., Schutte, E., Fridjhon, P., & O’Carroll, S. (2001).
    Suitability of published neuropsychological test norms for urban African students in South Africa. Personality & Individual Differences, 30, 1413-1425.
  3. Smith, D.K., Wessels, R.A., & Riebel, E.M. (1997).
    Use of the WISC-III and K-BIT with Hmong students. Paper presented at Annual Meeting of the American Psychological Association, Chicago, USA, August 1997.
  4. Soemantri, A. G. (1989).
    Preliminary findings on iron supplementation and learning achievement of rural Indonesian children. American Journal of Clinical Nutrition, 50, 698-702.

  1. Solon, O., Riddell, T. J., Quimbo, S. A., Butrick, E., Aylward, G. P., Bacate, M. L., & Peabody, J. W. (2007).
    Associations between Cognitive Function, Blood Lead Concentration, and Nutrition among Children in the Central Philippines. The Journal of Pediatrics, 152, 237-243. doi: 10.1016/j.jpeds.2007.09.008.
  2. Soto, B. I. C., Ramírez, F. Z., & Tomasini, G. A. (2014).
    Quienes son los alumnus con aptitud sobresaliente? Revista Actualidades Investigativas en Educación, 14, 1-32.
  3. Spanoudis, G., Natsopoulos, D., & Lynn, R. (2016).
    Sex Differences for 10 to 17 Year Olds on the Standard Progressive Matrices in Cyprus. Mankind Quarterly, 57, 283-290.
  4. Sroythong, W. (2008).
    The validity study of the Test of Nonverbal Intelligence, Third Edition: TONI-3. Unpublished master’s thesis, Mahidol University, Thailand.

  1. Stein, A. D., Behrman, J. R., DiGirolamo, A., Grajeda, R., Martorell, R., Quisumbing, A., & Ramakrishnan, U. (2005).
    Schooling, educational achievement, and cognitive functioning among young Guatemalan adults. Food and Nutrition Bulletin, 26, 46-54.
  2. Sternberg, R. J., Nokes, C., Geissler, P. W., Prince, R., Okatcha, F., Bundy, D. A., & Grigorenko, E. L. (2001).
    The relationship between academic and practical intelligence: a case study in Kenya. Intelligence, 29, 401-418.
  3. Sukhatunga, K., Kowasint, C., Phatthrayuttawat S., Chantra, J., Chaiyasit, W., Bunnagulrote, K., & Imaroonrak, S. (2006).
    Norms of the Advanced Progressive Matrices (APM) in Thai students age 12-18 years old. Journal of Thai Clinical Psychology, 37, 1-10.
  4. Sukhatunga, K., Kowasint, C., Phatthrayuttawat S., Chantra, J., Chaiyasit, W., Bunnagulrote, K., & Imaroonrak, S. (2006).
    Norms of the Coloured Progressive Matrices (CPM) in Thai students age 6-11 years old. Journal of Thai Clinical Psychology, 37, 9-22.

  1. Suwartono, Ch., Amiseso, C. P., & Handoyo, R. T. (2017).
    Uji Reliabilitas dan Validitas Eksternal The Raven’s Standard Progressive Matrices. Humanistas (Jurnal Psikologi Indonesia), 14.
  2. Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Hashizume, H., Sassa, Y., … & Kawashima, R. (2015).
    Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference. NeuroImage, 119, 197-209. doi:10.1016/j.neuroimage.2015.06.058
  3. Talapat, N., & Suwannalert, S. (1966).
    Standardization of Progressive Matrices Test for Thai children. Journal of the Psychiatric Association of Thailand, 11, 123-136.
  4. Teeter, A., Moore, C. L., & Petersen, J. D. (1982) WISC-R verbal and performance abilities of Native American students referred for school learning problems. Pshology in the School, 19, 39-44.

  1. Tellegen, P. J., & Laros, J. A. (2004).
    Cultural bias in the SON-R test: Comparative study of Brazilian and Dutch children. Psicologia: Teoria e Pesquisa Mai-Ago, 20, 103-111.
  2. Thavornsuwanchai (2008).
    The psychometric properties of the development test of visual motor integration 4th edition, revised (VMI4R) in primary school students Cholburi province. Master Thesis at the Faculty of Graduate Studies at Mahidol University.
  3. Tooley, J., Dixon, P., Shamsan, Y., & Schagen, I. (2010).
    The relative quality and cost-effectiveness of private and public schools for low-income families: a case study in a developing country. School Effectiveness and School Improvement: An International Journal of Research, Policy and Practice, 21, 117-144.
  4. Torres Díaz, P., García, I. R., Irizarry, W. R., & Fernández, C. R. (2009).
    Validación concurrente de la Wechsler Intelligence Scale for Children-Fourth Edition, Spanish con la Escala de Inteligencia Wechsler para inos-Revisada de Puerto Rico. Revista Puertorriqueña de Psicología, 20, 83-102.

  1. Tuan, T., Lan, P.T., Harpham, T., Huong, N.T., Thach, T.D., Tod, B., … & Ha, N.T.V. (2003).
    Young Lives Preliminary Country Report: Vietnam.
  2. Tynes-Jones, J. (2005).
    Applying the Bio-Ecological model of intelligence to the Wechsler Scales in The Bahamas. College of the Bahamas Research Journal, 13, 68-80.
  3. Tzuriel, D., & Caspi, N. (1992).
    Cognitive modifiability and cognitive performance of deaf and hearing preschool children. Journal of Special Education, 26, 235-252.
  4. Tzuriel, D., & Kaufman, R. (1999).
    Mediated learning and cognitive modifiability. Dynamic assessment of young Ethiopian immigrant children to Israel. Journal of Cross Cultural Psychology, 30, 359-380.

  1. Uno, A., Shinya, N., Haruhara, N., & Kaneko, M. (2005).
    Raven’s Coloured Progressive Matrices in Japanese Children – As a Screening Intelligence Test for Children with Learning Disorder and Acquired Childhood Aphasia. The Japan Journal of Logopedics and Phoniatrics, 46, 185-189.
  2. Uppu, B., Devi, V., Anitha, N., & Radhika Rani, K. C. (2015).
    Gender Performance on Intelligence Quotient Test among Medical Students in a Government Medical College. IOSR Journal of Dental and Medical Sciences, 14, 17-21.
  3. Valcarcel, E. C., Matrinez, E. C., Bouza, C., & Solozabal, T. P. (2000).
    Algunuas characteristicas y possibilidades del test de matrices progressivas de Raven. Revista Cubana de Psicologia, 17, 95-105.
  4. Valencia, R. R., Rankin, R. J., & Livingston, R. (1995).
    K-ABC and content bias: Comparisons between Mexican American and White children. Psychology in the Schools, 32,153-169. From: Valencia, R. R., & Suzuki, L. A. (2001).
    Intelligence Testing and Minority Students. Foundations, Performance, Factors, and Assessment Issues. Thousand Oaks, London, New Delhi: Sage Publications Inc..

  1. van der Sluis, S., Derom, C., Thiery, E., Bartels, M., Polderman, T. J. C., Verhulst, F. C., Jacobs, N., … Posthuma, D. (2008).
    Sex differences on the WISC-R in Belgium and The Netherlands. Intelligence, 36, 48-67.
  2. Van der Vijver, F. J. R., & Brouwers, S. A. (2009).
    Schooling and basic aspects of intelligence: a natural quasi experiment in Malawi. Journal of Applied Developmental Psychology, 30, 67-74.
  3. Vass, V. A. (1992).
    Standardization of Raven’s Standard progressive Matrices for Secondary School African Pupils in the Grahamstown Region. Thesis submitted in partial fulfillment of the requirements for the Degree of MASTER OF ARTS of Rhodes University.
  4. Vazquez, C.D. (1989).
    A comparison of Puerto Rican children’s performance on the Spanish version of the Wechsler Intelligence Scale for Children-Revised (WISC-R) and the Kaufman Assessment Battery for Children (K-ABC). Unpublished doctoral dissertation, University of Massachusetts, USA.

  1. Vedder, P., Van de Vijfeijken, K., & Kook, H. (2000).
    Borrowing norms for the Human Figure Drawing Test: how to validate this practice? Scandinavian Journal of Educational Research, 44, 393-404.
  2. Veii, K., (2003).
    Cognitive and linguistic predictors of literacy in Namibian Herero-English bilingual school children.Thesis submitted for the degree of Doctor of Philosophy to the Department of Psychology of the School of Human Sciences of the University of Surrey in Guildford, Surrey, United Kingdom, 2003.
  3. Vejleskov, H. (1968).
    An analysis of Raven Matrix responses in fifth grade children. Scandinavian Journal of Psychology, 9, 177-186.
  4. Virués-Ortega, J., Bucks, R., Kirkham, F. J., Baldeweg, T., Baya-Botti, A., & Hogan, A. A. on behalf of Bolivian Children Living at Altitude project (BoCLA 06) (2011).
    Changing patterns of neuropsychological functioning in children living at high altitude above and below 4000 m: a report from the Bolivian Children Living at Altitude (BoCLA) study. Developmental Science, 14, 1185-1193.

  1. Vista, A. D., & Grantham, T. C. (2010).
    Effects of Parental Education Level on Fluid Intelligence of Philippine Public School Students. Journal of Psychoeducational Assessment, 28, 236–232.
  2. Waber, D. P., Bryce, C. P., Fitzmaurice, G. M., Zichlin, M. L., McGaughy, J., Girard, J. M., & Galler, J. R. (2014).
    Neuropsychological outcomes at midlife following moderate to severe malnutrition in infancy. Neuropsychology, 28, 530-540.
  3. Wachs, T. D., Bishry, Z., Moussa, W., Yunis, F., McCabe, G., Harrison, G., Sweifi, E., Kirksey, A., Galal, O., Jerome, N., & Shaheen, F. (1995).
    Nutritional intake and onext as predictors of cognition and adaptive behavior of Egyptian school children. International Journal of Behavioral Development, 18, 425-450.
  4. Walker, S. P., Grantham-McGregor, S. M., Powell, Ch. A., & Chang, S. M. (2000).
    Effects of growth restriction in early childhood on growth, IQ, and cognition at age 11 to 12 years and the benefits of nutritional supplementation and psychosocial stimulation. Journal of Pediatrics, 137, 36-41.

  1. Walker, S. P., Thame, M. M., Chang, S. M., Bennett, F., & Forrester, T. E. (2007).
    Association of growth in utero with cognitive function at age 6–8 years. Early Human Development, 83, 355-360.
  2. Walker, S.P., Chang, S.M., Younger, N., & Grantham-McGregor, S.M. (2010).
    The effect of psychosocial stimulation on cognition and behaviour at 6 years in a cohort of term, low-birthweight Jamaican children. Developmental Medicine & Child Neurology, 52, e148-e154.
  3. Waschl, N. A., Nettelbeck, T., Jackson, S. A., & Burns, N. R. (2016).
    Dimensionality of the Raven’s Advanced Progressive Matrices: Sex differences and visuospatial ability. Personality and Individual Differences, 100, 157-166. doi: 10.1016/j.paid.2015.12.008
  4. Wasserman, G. A., Liu, X., Lolacono, N. J., Factor-Litvak, P., Kline, J. K., Popovac, D., Morina, N., Musabegovic, A., Vrenezi, N., Capuni-Paracka, S., Lekic, V., Preteni-Redjepi, E., Hadzialievicj, S., Slavkovich, V., & Graziano, J. H. (1997).
    Lead exposure and intelligence in 7-year-old children: The Yugoslavia prospective study. Environmental Healh Perspectives, 105, 956-962.

  1. Wasserman, G. A., Liu, X., Parvez, F., Ahsan, F., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Levy, D., Cheng, Zh., & Graziano, J. H. (2007).
    Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environmnetal Health Perspectives, 115, 285-296.
  2. Watanabe, K., Flores, R., Fujiwara, J., & Tran, L.T.H. (2005).
    Early childhood development interventions and cognitive development of young children in rural Vietnam. Journal of Nutrition, 135, 1918-1925.
  3. Weihe, P., Hansen, J. C., Murata, K., Debes, F., Jørgensen, P. J., Steuerwald, U., White, R. F., & Grandjean, Ph. (2002).
    Neurobehavioral performance of Inuit children with increased prenatal exposure to Methylmercury. International Journal of Circumpolar Health, 61, 41-49.
  4. Witkowska, E. (2014).
    Secular score gains on Raven’s Progressive Matrices in a population of Polish adolescents. Polish Psychological Bulletin, 45, 142-146.

  1. Wolff, P. H., & Fesseha, G. (1999).
    The orphans of Eritrea: A five-year follow-up study. Journal of Child Psychology & Psychiatry, 40, 1231-1237.
  2. Wolff, P. H., Tesfai, B., Egasso, H., & Aradom, T. (1995).
    The orphans of Eritrea: A comparison study. Journal of Child Psychology and Psychiatry, 36, 633-644.
  3. Wood, G. M. O., Carvalho, M. R. S., Rothe-Neves, R., & Haase, V. G. (2001).
    Validação da bateria de avaliação da memória de trabalho (BAMT-UFMG). Psicologia: Reflexão e Crítica, 14, 325-341.
  4. Yakmaci-Guzel, B., & Akarsu, F. (2006).
    Comparing overexcitabilities of gifted and non-gifted 10th grade students in Turkey. High Ability Studies, 17, 43-56.

  1. Yunis, F. A., Khalifa, A. G., Moner, Z. M., Ayad, A. A., Gaber, S. A., & Mohamed, N. H. (1995).
    Physical growth, nutritional status and intellectual performance among school students in a rural village. Medical Journal of Cairo University, 63, 971-980.
  2. Zakharov, I. M., Voronin, I. A., Ismatullina, V. I., & Malykha, S. B. (2016).
    The relationship between visual recognition memory andintelligence. Procedia – Social and Behavioral Sciences, 233, 313-317.
  3. Žebec, M., Demetriou A., & Kotrla-Topić, M. (2015).
    Changing expressions of general intelligence in development: A 2-wave longitudinal study from 7 to 18 years of age. Intelligence, 49, 94-109.
  4. Ziada, Kh. E., Metwaly, H. A. M., Bakhiet, S. F. A., Cheng, H., & Lynn, R. (2017).
    A New Study of Intelligence in Egypt. Mankind Quarterly, 58, 307-311.